1
0
mirror of https://github.com/kalmarek/GroupRings.jl.git synced 2025-01-01 11:45:28 +01:00
GroupRings.jl/test/runtests.jl

303 lines
9.0 KiB
Julia
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

using Test
using AbstractAlgebra
using GroupRings
using SparseArrays
@testset "GroupRings" begin
@testset "Constructors: PermutationGroup" begin
G = PermutationGroup(3)
@test isa(GroupRing(G), AbstractAlgebra.Ring)
@test isa(GroupRing(G), GroupRing)
RG = GroupRing(G)
@test isdefined(RG, :basis) == true
@test length(RG.basis) == 6
@test isdefined(RG, :basis_dict) == true
@test isdefined(RG, :pm) == false
@test isa(GroupRing(PermutationGroup(6), rand(1:6, 6,6)), GroupRing)
RG = GroupRing(G, fastm=true)
@test isdefined(RG, :pm) == true
@test RG.pm == zeros(Int, (6,6))
@test isa(complete!(RG), GroupRing)
@test all(RG.pm .> 0)
@test RG.pm == GroupRings.fastm!(GroupRing(G, fastm=false), fill=true).pm
@test RG.basis_dict == GroupRings.reverse_dict(collect(G))
@test isa(GroupRing(G, collect(G)), GroupRing)
S = collect(G)
pm = create_pm(S)
@test isa(GroupRing(G, S), GroupRing)
@test isa(GroupRing(G, S, pm), GroupRing)
A = GroupRing(G, S)
B = GroupRing(G, S, pm)
@test RG == A
@test RG == B
end
@testset "GroupRing constructors FreeGroup" begin
using Groups
F = FreeGroup(3)
S = gens(F)
append!(S, [inv(s) for s in S])
basis, sizes = Groups.generate_balls(S, F(), radius=4)
d = GroupRings.reverse_dict(basis)
@test_throws KeyError create_pm(basis)
pm = create_pm(basis, d, sizes[2])
@test isa(GroupRing(F, basis, pm), GroupRing)
@test isa(GroupRing(F, basis, d, pm), GroupRing)
A = GroupRing(F, basis, pm)
B = GroupRing(F, basis, d, pm)
@test A == B
RF = GroupRing(F, basis, d, create_pm(basis, d, check=false))
nz1 = count(!iszero, RF.pm)
@test nz1 > 1000
GroupRings.complete!(RF)
nz2 = count(!iszero, RF.pm)
@test nz2 > nz1
@test nz2 == 45469
g = B()
s = S[2]
g[s] = 1
@test g == B(s)
@test g[s^2] == 0
@test_throws KeyError g[s^10]
end
@testset "GroupRingElems constructors/basic manipulation" begin
G = PermutationGroup(3)
RG = GroupRing(G, fastm=true)
a = rand(6)
@test isa(GroupRingElem(a, RG), GroupRingElem)
@test isa(RG(a), GroupRingElem)
@test all(isa(RG(g), GroupRingElem) for g in G)
@test_throws String GroupRingElem([1,2,3], RG)
@test isa(RG(G([2,3,1])), GroupRingElem)
p = G([2,3,1])
a = RG(p)
@test length(a) == 1
@test isa(a.coeffs, SparseVector)
@test a.coeffs[5] == 1
@test a[5] == 1
@test a[p] == 1
@test string(a) == "(1,2,3)"
@test string(-a) == " - 1(1,2,3)"
@test RG([0,0,0,0,1,0]) == a
s = G([1,2,3])
@test a[s] == 0
a[s] = 2
@test a.coeffs[1] == 2
@test a[1] == 2
@test a[s] == 2
@test string(a) == "2() + (1,2,3)"
@test string(-a) == " - 2() - 1(1,2,3)"
@test length(a) == 2
end
@testset "Arithmetic" begin
G = PermutationGroup(3)
RG = GroupRing(G, fastm=true)
a = RG(ones(Int, order(G)))
@testset "scalar operators" begin
@test isa(-a, GroupRingElem)
@test (-a).coeffs == -(a.coeffs)
@test isa(2*a, GroupRingElem)
@test eltype(2*a) == typeof(2)
@test (2*a).coeffs == 2 .*(a.coeffs)
ww = "Scalar and coeffs are in different rings! Promoting result to Float64"
@test isa(2.0*a, GroupRingElem)
@test_logs (:warn, ww) eltype(2.0*a) == typeof(2.0)
@test_logs (:warn, ww) (2.0*a).coeffs == 2.0.*(a.coeffs)
@test_logs (:warn, ww) (a/2).coeffs == a.coeffs./2
b = a/2
@test isa(b, GroupRingElem)
@test eltype(b) == typeof(1/2)
@test (b/2).coeffs == 0.25*(a.coeffs)
@test isa(convert(Rational{Int}, a), GroupRingElem)
@test eltype(convert(Rational{Int}, a)) == Rational{Int}
@test convert(Rational{Int}, a).coeffs ==
convert(Vector{Rational{Int}}, a.coeffs)
b = convert(Rational{Int}, a)
@test isa(b//4, GroupRingElem)
@test eltype(b//4) == Rational{Int}
@test isa(b//big(4), RingElem)
@test eltype(b//(big(4)//1)) == Rational{BigInt}
@test isa(a//1, GroupRingElem)
@test eltype(a//1) == Rational{Int}
@test (1.0a)//1 == (1.0a)
end
@testset "Additive structure" begin
@test RG(ones(Int, order(G))) == sum(RG(g) for g in G)
a = RG(ones(Int, order(G)))
b = sum((-1)^parity(g)*RG(g) for g in G)
@test 1/2*(a+b).coeffs == [1.0, 0.0, 1.0, 0.0, 1.0, 0.0]
a = RG(1) + RG(perm"(2,3)") + RG(perm"(1,2,3)")
b = RG(1) - RG(perm"(1,2)(3)") - RG(perm"(1,2,3)")
@test a - b == RG(perm"(2,3)") + RG(perm"(1,2)(3)") + 2RG(perm"(1,2,3)")
@test 1//2*2a == a
@test a + 2a == (3//1)*a
@test 2a - (1//1)*a == a
end
@testset "Multiplicative structure" begin
for g in G, h in G
a = RG(g)
b = RG(h)
@test a*b == RG(g*h)
@test (a+b)*(a+b) == a*a + a*b + b*a + b*b
end
for g in G
@test star(RG(g)) == RG(inv(g))
@test (one(RG)-RG(g))*star(one(RG)-RG(g)) ==
2*one(RG) - RG(g) - RG(inv(g))
@test aug((one(RG)-RG(g))) == 0
end
a = RG(1) + RG(perm"(2,3)") + RG(perm"(1,2,3)")
b = RG(1) - RG(perm"(1,2)(3)") - RG(perm"(1,2,3)")
@test a*b == mul!(a,a,b)
@test aug(a) == 3
@test aug(b) == -1
@test aug(a)*aug(b) == aug(a*b) == aug(b*a)
z = sum((one(RG)-RG(g))*star(one(RG)-RG(g)) for g in G)
@test aug(z) == 0
@test supp(z) == parent(z).basis
@test supp(RG(1) + RG(perm"(2,3)")) == [G(), perm"(2,3)"]
@test supp(a) == [perm"(3)", perm"(2,3)", perm"(1,2,3)"]
end
end
@testset "SumOfSquares in group rings" begin
= star
G = FreeGroup(["g", "h", "k", "l"])
S = G.(G.gens)
S = [S; inv.(S)]
ID = G()
RADIUS=3
@time E_R, sizes = Groups.generate_balls(S, ID, radius=2*RADIUS);
@test sizes == [9, 65, 457, 3201, 22409, 156865]
E_rdict = GroupRings.reverse_dict(E_R)
pm = GroupRings.create_pm(E_R, E_rdict, sizes[RADIUS]; twisted=true);
RG = GroupRing(G, E_R, E_rdict, pm)
g = RG.basis[2]
h = RG.basis[3]
k = RG.basis[4]
l = RG.basis[5]
G = (1-RG(g))
@test G^2 == 2 - RG(g) - (RG(g))
G = (1-RG(g))
H = (1-RG(h))
K = (1-RG(k))
L = (1-RG(l))
GH = (1-RG(g*h))
KL = (1-RG(k*l))
X = (2 - (RG(g)) - RG(h))
Y = (2 - (RG(g*h)) - RG(k))
@test -(2 - RG(g*h) - (RG(g*h))) + 2G^2 + 2H^2 == X^2
@test (2 - RG(g*h) - (RG(g*h))) == GH^2
@test -(2 - RG(g*h*k) - (RG(g*h*k))) + 2GH^2 + 2K^2 == Y^2
@test -(2 - RG(g*h*k) - (RG(g*h*k))) +
2(GH^2 - 2G^2 - 2H^2) +
4G^2 + 4H^2 + 2K^2 ==
Y^2
@test GH^2 - 2G^2 - 2H^2 == - X^2
@test -(2 - RG(g*h*k) - (RG(g*h*k))) + 4G^2 + 4H^2 + 2K^2 == 2X^2 + Y^2
@test GH^2 == 2G^2 + 2H^2 - (2 - (RG(g)) - RG(h))^2
@test KL^2 == 2K^2 + 2L^2 - (2 - (RG(k)) - RG(l))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) + 2*GH^2 + 2*KL^2 ==
(2 - (RG(g*h)) - RG(k*l))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
2(2G^2 + 2H^2 - (2 - (RG(g)) - RG(h))^2) +
2(2K^2 + 2L^2 - (2 - (RG(k)) - RG(l))^2) ==
(2 - (RG(g*h)) - RG(k*l))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
2(2G^2 + 2H^2) +
2(2K^2 + 2L^2) ==
(2 - (RG(g*h)) - RG(k*l))^2 +
2(2 - (RG(g)) - RG(h))^2 +
2(2 - (RG(k)) - RG(l))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
2(2 - (RG(g*h*k)) - RG(g*h*k)) + 2L^2 ==
(2 - (RG(g*h*k)) - RG(l))^2
@test 2 - (RG(g*h*k)) - RG(g*h*k) ==
2GH^2 + 2K^2 - (2 - (RG(g*h)) - RG(k))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
2(2GH^2 + 2K^2 - (2 - (RG(g*h)) - RG(k))^2) + 2L^2 ==
(2 - (RG(g*h*k)) - RG(l))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
2(2GH^2 + 2K^2) + 2L^2 ==
(2 - (RG(g*h*k)) - RG(l))^2 +
2(2 - (RG(g*h)) - RG(k))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
8G^2 + 8H^2 + 4K^2 + 2L^2 ==
(2 - (RG(g*h*k)) - RG(l))^2 + 2(2 - (RG(g*h)) - RG(k))^2 + 4(2 - (RG(g)) - RG(h))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) +
2GH^2 + 2KL^2 == (2 - (RG(g*h)) - RG(k*l))^2
@test -(2 - (RG(g*h*k*l)) - RG(g*h*k*l)) + 2(2G^2 + 2H^2) + 2(2K^2 + 2L^2) ==
(2 - (RG(g*h)) - RG(k*l))^2 + 2(2 - (RG(k)) - RG(l))^2 + 2(2 - (RG(g)) - RG(h))^2
end
end