1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-09 21:37:33 +01:00
Groups.jl/src/homomorphisms.jl

115 lines
3.3 KiB
Julia
Raw Normal View History

2022-04-02 14:24:01 +02:00
"""
Homomorphism(f, G::AbstractFPGroup, H::AbstractFPGroup[, check=true])
Struct representing homomorphism map from `G` to `H` given by map `f`.
To define `h = Homomorphism(f, G, H)` function (or just callable) `f` must
implement method `f(i::Integer, source, target)::AbstractWord` with the
following meaning. Suppose that word `w = Word([i])` consists of a single
letter in the `alphabet` of `source` (usually it means that in `G` it
represents a generator or its inverse). Then `f(i, G, H)` must return the
**word** representing the image in `H` of `G(w)` under the homomorphism.
In more mathematical terms it means that if `h(G(w)) == h`, then
`f(i, G, H) == word(h)`.
Images of both `AbstractWord`s and elements of `G` can be obtained by simply
calling `h(w)`, or `h(g)`.
If `check=true` then the correctness of the definition of `h` will be performed
when creating the homomorphism.
!!! note
`f(i, G, H)` must be implemented for all letters in the alphabet of `G`,
not only for those `i` which represent `gens(G)`. Function `f` will be
evaluated exactly once per letter of `alphabet(G)` and the results will be
cached.
# Examples
```julia
julia> F₂ = FreeGroup(2)
free group on 2 generators
julia> g,h = gens(F₂)
2-element Vector{FPGroupElement{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, }}:
f1
f2
julia> ℤ² = FPGroup(F₂, [g*h => h*g])
Finitely presented group generated by:
{ f1 f2 },
subject to relations:
f1*f2 => f2*f1
julia> hom = Groups.Homomorphism(
(i, G, H) -> Groups.word_type(H)([i]),
F₂,
ℤ²
)
Homomorphism
from : free group on 2 generators
to : f1 f2 |
f1*f2 => f2*f1
julia> hom(g*h*inv(g))
f2
julia> hom(g*h*inv(g)) == hom(h)
true
```
"""
struct Homomorphism{Gr1, Gr2, I, W}
gens_images::Dict{I, W}
source::Gr1
target::Gr2
function Homomorphism(
f,
source::AbstractFPGroup,
target::AbstractFPGroup;
check=true
)
A = alphabet(source)
dct = Dict(i=>convert(word_type(target), f(i, source, target))
for i in 1:length(A))
I = eltype(word_type(source))
W = word_type(target)
hom = new{typeof(source), typeof(target), I, W}(dct, source, target)
if check
@assert hom(one(source)) == one(target)
for x in gens(source)
@assert hom(x^-1) == hom(x)^-1
for y in gens(source)
@assert hom(x*y) == hom(x)*hom(y)
@assert hom(x*y)^-1 == hom(y^-1)*hom(x^-1)
end
end
for (lhs, rhs) in relations(source)
relator = lhs*inv(alphabet(source), rhs)
im_r = hom.target(hom(relator))
@assert isone(im_r) "Map does not define a homomorphism: h($relator) = $(im_r)$(one(target))."
end
end
return hom
end
end
function (h::Homomorphism)(w::AbstractWord)
result = one(word_type(h.target)) # Word
for l in w
append!(result, h.gens_images[l])
end
return result
end
function (h::Homomorphism)(g::AbstractFPGroupElement)
@assert parent(g) === h.source
w = h(word(g))
return h.target(w)
end
Base.show(io::IO, h::Homomorphism) = print(io, "Homomorphism\n from : $(h.source)\n to : $(h.target)")