1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00
Groups.jl/test/DirectPower-tests.jl

90 lines
2.4 KiB
Julia
Raw Normal View History

2019-01-02 15:50:14 +01:00
@testset "DirectPowers" begin
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
×(a,b) = Groups.DirectPower(a,b)
2018-09-21 19:11:37 +02:00
2017-07-23 03:27:03 +02:00
@testset "Constructors" begin
2018-07-30 15:20:37 +02:00
G = PermutationGroup(3)
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
@test Groups.DirectPowerGroup(G,2) isa AbstractAlgebra.Group
2018-07-30 15:20:37 +02:00
@test G×G isa AbstractAlgebra.Group
2019-01-02 15:50:14 +01:00
@test Groups.DirectPowerGroup(G,2) isa Groups.DirectPowerGroup{2, Generic.PermGroup{Int64}}
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
@test (G×G)×G == DirectPowerGroup(G, 3)
2018-07-30 15:20:37 +02:00
@test (G×G)×G == (G×G)×G
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
GG = DirectPowerGroup(G,2)
@test (G×G)() isa GroupElem
@test (G×G)((G(), G())) isa GroupElem
@test (G×G)([G(), G()]) isa GroupElem
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
@test Groups.DirectPowerGroupElem((G(), G())) == (G×G)()
2018-07-30 15:20:37 +02:00
@test GG(G(), G()) == (G×G)()
2019-01-02 15:50:14 +01:00
g = perm"(1,2,3)"
@test GG(g, g^2) isa GroupElem
@test GG(g, g^2) isa Groups.DirectPowerGroupElem{2, Generic.perm{Int64}}
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
h = GG(g,g^2)
2017-07-23 03:27:03 +02:00
@test h == GG(h)
2018-07-30 15:20:37 +02:00
@test GG(g, g^2) isa GroupElem
2019-01-02 15:50:14 +01:00
@test GG(g, g^2) isa Groups.DirectPowerGroupElem
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
@test_throws MethodError GG(g,g,g)
2017-07-23 03:27:03 +02:00
@test GG(g,g^2) == h
@test h[1] == g
@test h[2] == g^2
2019-01-02 15:50:14 +01:00
h = GG(g, G())
2017-07-23 03:27:03 +02:00
@test h == GG(g, G())
end
2018-07-30 15:20:37 +02:00
@testset "Basic arithmetic" begin
G = PermutationGroup(3)
2019-01-02 15:50:14 +01:00
GG = G×G
i = perm"(1,3)"
g = perm"(1,2,3)"
h = GG(g,g^2)
k = GG(g^3, g^2)
2018-07-30 15:20:37 +02:00
2019-01-02 15:50:14 +01:00
@test h^2 == GG(g^2,g)
@test h^6 == GG()
2017-07-23 03:27:03 +02:00
2018-07-30 15:20:37 +02:00
@test h*h == h^2
2019-01-02 15:50:14 +01:00
@test h*k == GG(g,g)
2017-07-23 03:27:03 +02:00
2018-07-30 15:20:37 +02:00
@test h*inv(h) == (G×G)()
2019-01-02 15:50:14 +01:00
w = GG(g,i)*GG(i,g)
@test w == GG(perm"(1,2)(3)", perm"(2,3)")
@test w == inv(w)
@test w^2 == w*w == GG()
2017-07-23 03:27:03 +02:00
end
2018-07-30 15:20:37 +02:00
@testset "elem/parent_types" begin
G = PermutationGroup(3)
2019-01-02 15:50:14 +01:00
g = perm"(1,2,3)"
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
@test elem_type(G×G) == DirectPowerGroupElem{2, elem_type(G)}
@test elem_type(G×G×G) == DirectPowerGroupElem{3, elem_type(G)}
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectPowerGroup{2, typeof(G)}
@test parent(DirectPowerGroupElem((g,g^2,g^3))) == DirectPowerGroup(G,3)
2017-07-23 03:27:03 +02:00
end
@testset "Misc" begin
2018-07-30 15:20:37 +02:00
G = PermutationGroup(3)
2019-01-02 15:50:14 +01:00
GG = Groups.DirectPowerGroup(G,3)
@test order(GG) == 216
2018-07-30 15:20:37 +02:00
2019-01-02 15:50:14 +01:00
@test isa(collect(GG), Vector{Groups.DirectPowerGroupElem{3, elem_type(G)}})
elts = vec(collect(GG))
2017-07-23 03:27:03 +02:00
2019-01-02 15:50:14 +01:00
@test length(elts) == 216
2018-09-21 19:11:37 +02:00
@test all([g*inv(g) == GG() for g in elts])
2017-07-23 03:27:03 +02:00
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
end
end