1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-05 02:11:27 +01:00
Groups.jl/test/DirectProd-tests.jl

84 lines
2.3 KiB
Julia
Raw Normal View History

2017-07-23 03:27:03 +02:00
@testset "DirectProducts" begin
using Nemo
G = PermutationGroup(3)
g = G([2,3,1])
F, a = FiniteField(2,3,"a")
@testset "Constructors" begin
@test isa(Groups.DirectProductGroup(G,2), Nemo.Group)
@test isa(G×G, Nemo.Group)
@test isa(Groups.DirectProductGroup(G,2), Groups.DirectProductGroup{Nemo.PermGroup})
GG = Groups.DirectProductGroup(G,2)
@test GG == Groups.DirectProductGroup(G,2)
@test Groups.DirectProductGroupElem([G(), G()]) == GG()
@test GG(G(), G()) == GG()
@test isa(GG([g, g^2]), GroupElem)
@test isa(GG([g, g^2]), Groups.DirectProductGroupElem{Nemo.perm})
h = GG([g,g^2])
@test h == GG(h)
@test isa(GG(g, g^2), GroupElem)
@test isa(GG(g, g^2), Groups.DirectProductGroupElem)
@test_throws String GG(g,g,g)
@test GG(g,g^2) == h
@test size(h) == (2,)
@test h[1] == g
@test h[2] == g^2
h[2] = G()
@test h == GG(g, G())
end
GG = Groups.DirectProductGroup(G,2)
FF = Groups.DirectProductGroup(F,2)
2017-07-23 03:27:03 +02:00
@testset "Types" begin
2017-07-23 03:27:03 +02:00
@test elem_type(GG) == Groups.DirectProductGroupElem{elem_type(G)}
@test elem_type(FF) == Groups.DirectProductGroupElem{elem_type(F)}
@test parent_type(typeof(GG(g,g^2))) == Groups.DirectProductGroup{typeof(G)}
@test parent_type(typeof(FF(a,a^2))) == Groups.DirectProductGroup{typeof(F)}
@test isa(FF([0,1]), GroupElem)
@test isa(FF([0,1]), Groups.DirectProductGroupElem)
@test isa(FF([0,1]), Groups.DirectProductGroupElem{elem_type(F)})
@test_throws MethodError FF(1,0)
end
@testset "Group arithmetic" begin
2017-07-23 03:27:03 +02:00
g = G([2,3,1])
h = GG([g,g^2])
@test h^2 == GG(g^2,g)
@test h^6 == GG()
@test h*h == h^2
@test h*inv(h) == GG()
@test FF([0,a])*FF([a,1]) == FF(a,1+a)
x, y = FF([1,a]), FF([a^2,1])
@test x*y == FF([a^2+1, a+1])
@test inv(x) == FF([1,a])
end
@testset "Misc" begin
@test order(GG) == 36
@test order(FF) == 64
@test isa([elements(GG)...], Vector{Groups.DirectProductGroupElem{elem_type(G)}})
elts = [elements(GG)...]
@test length(elts) == 36
@test all([g*inv(g) for g in elts] .== GG())
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
end
end