mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-13 22:27:34 +01:00
194 lines
5.6 KiB
Julia
194 lines
5.6 KiB
Julia
|
using PermutationGroups
|
|||
|
|
|||
|
@testset "Wajnryb presentation for Σ₄₁" begin
|
|||
|
|
|||
|
genus = 4
|
|||
|
|
|||
|
G = New.SpecialAutomorphismGroup(New.FreeGroup(2genus))
|
|||
|
|
|||
|
T = let G = G; (Tas, Tαs, Tes) = New.mcg_twists(genus)
|
|||
|
Ta = G.(Tas)
|
|||
|
Tα = G.(Tαs)
|
|||
|
Tes = G.(Tes)
|
|||
|
|
|||
|
[Ta; Tα; Tes]
|
|||
|
end
|
|||
|
|
|||
|
a1 = T[1]^-1 # Ta₁
|
|||
|
a2 = T[5]^-1 # Tα₁
|
|||
|
a3 = T[9]^-1 # Te₁₂
|
|||
|
a4 = T[6]^-1 # Tα₂
|
|||
|
a5 = T[12]^-1 # Te₂₃
|
|||
|
a6 = T[7]^-1 # Tα₃
|
|||
|
a7 = T[14]^-1 # Te₃₄
|
|||
|
a8 = T[8]^-1 # Tα₄
|
|||
|
|
|||
|
b0 = T[2]^-1 # Ta₂
|
|||
|
a0 = (a1*a2*a3)^4*b0^-1 # from the 3-chain relation
|
|||
|
X = a4*a5*a3*a4 # auxillary, not present in the Primer
|
|||
|
b1 = X^-1*a0*X
|
|||
|
b2 = T[10]^-1 # Te₁₃
|
|||
|
|
|||
|
As = T[[1,5,9,6,12,7,14,8]] # the inverses of the elements a
|
|||
|
|
|||
|
@testset "commutation relations" begin
|
|||
|
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before.
|
|||
|
for (j, aj) in enumerate(As)
|
|||
|
if abs(i-j) > 1
|
|||
|
@test ai*aj == aj*ai
|
|||
|
elseif i ≠ j
|
|||
|
@test ai*aj != aj*ai
|
|||
|
end
|
|||
|
end
|
|||
|
if i != 4
|
|||
|
@test a0*ai == ai*a0
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
@testset "braid relations" begin
|
|||
|
for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations.
|
|||
|
for (j, aj) in enumerate(As)
|
|||
|
if abs(i-j) == 1
|
|||
|
@test ai*aj*ai == aj*ai*aj
|
|||
|
end
|
|||
|
end
|
|||
|
end
|
|||
|
@test a0*a4*a0 == a4*a0*a4 # here, a0 and a4 are as before
|
|||
|
end
|
|||
|
|
|||
|
@testset "Lantern relation" begin
|
|||
|
|
|||
|
@testset "b2 definition" begin
|
|||
|
@test b2 == (a2*a3*a1*a2)^-1*b1*(a2*a3*a1*a2)
|
|||
|
|
|||
|
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
|
|||
|
d = New.domain(b2)
|
|||
|
im = New.evaluate(b2)
|
|||
|
z = im[7]*d[7]^-1
|
|||
|
|
|||
|
@test im[1] == d[1]
|
|||
|
@test im[2] == z*d[2]*z^-1
|
|||
|
@test im[3] == z*d[3]*z^-1
|
|||
|
@test im[4] == d[4]
|
|||
|
|
|||
|
@test im[5] == d[5]*z^-1
|
|||
|
@test im[6] == z*d[6]*z^-1
|
|||
|
@test im[7] == z*d[7]
|
|||
|
@test im[8] == d[8]
|
|||
|
|
|||
|
end
|
|||
|
|
|||
|
@testset "b2: commutation relations" begin
|
|||
|
@test b2*a1 == a1*b2
|
|||
|
@test b2*a2 != a2*b2
|
|||
|
@test b2*a3 == a3*b2
|
|||
|
@test b2*a4 == a4*b2
|
|||
|
@test b2*a5 == a5*b2
|
|||
|
@test b2*a6 != a6*b2
|
|||
|
end
|
|||
|
|
|||
|
@testset "b2: braid relations" begin
|
|||
|
@test a2*b2*a2 == b2*a2*b2
|
|||
|
@test a6*b2*a6 == b2*a6*b2
|
|||
|
end
|
|||
|
|
|||
|
@testset "lantern" begin
|
|||
|
u = (a6*a5)^-1*b1*(a6*a5)
|
|||
|
x = (a6*a5*a4*a3*a2*u*a1^-1*a2^-1*a3^-1*a4^-1) # yet another auxillary
|
|||
|
# x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6)
|
|||
|
@time New.evaluate(x)
|
|||
|
b3 = x*a0*x^-1
|
|||
|
@time New.evaluate(b3)
|
|||
|
@test a0*b2*b1 == a1*a3*a5*b3
|
|||
|
end
|
|||
|
end
|
|||
|
|
|||
|
|
|||
|
@testset "Te₁₂ definition" begin
|
|||
|
G = parent(first(T))
|
|||
|
F₈ = New.object(G)
|
|||
|
(a, b, c, d, α, β, γ, δ) = gens(F₈)
|
|||
|
|
|||
|
A = KnuthBendix.alphabet(G)
|
|||
|
|
|||
|
λ = [i == j ? one(G) : G([A[New.λ(i,j)]]) for i in 1:8, j in 1:8]
|
|||
|
ϱ = [i == j ? one(G) : G([A[New.ϱ(i,j)]]) for i in 1:8, j in 1:8]
|
|||
|
|
|||
|
g = one(G)
|
|||
|
# @show g
|
|||
|
# @show g(Groups.domain(G))
|
|||
|
|
|||
|
# β ↦ α*β
|
|||
|
g *= λ[6,5]
|
|||
|
@test New.evaluate(g)[6] == α*β
|
|||
|
|
|||
|
# α ↦ a*α*b^-1
|
|||
|
g *= λ[5,1]*inv(ϱ[5,2])
|
|||
|
@test New.evaluate(g)[5] == a*α*b^-1
|
|||
|
|
|||
|
# β ↦ b*α^-1*a^-1*α*β
|
|||
|
g *= inv(λ[6,5])
|
|||
|
@test New.evaluate(g)[6] == b*α^-1*a^-1*α*β
|
|||
|
|
|||
|
# b ↦ α
|
|||
|
g *= λ[2,5]*inv(λ[2,1]);
|
|||
|
@test New.evaluate(g)[2] == α
|
|||
|
|
|||
|
# b ↦ b*α^-1*a^-1*α
|
|||
|
g *= inv(λ[2,5]);
|
|||
|
@test New.evaluate(g)[2] == b*α^-1*a^-1*α
|
|||
|
|
|||
|
# b ↦ b*α^-1*a^-1*α*b*α^-1
|
|||
|
g *= inv(ϱ[2,5])*ϱ[2,1];
|
|||
|
@test New.evaluate(g)[2] == b*α^-1*a^-1*α*b*α^-1
|
|||
|
|
|||
|
# b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
|
|||
|
g *= ϱ[2,5];
|
|||
|
@test New.evaluate(g)[2] == b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
|
|||
|
|
|||
|
x = b*α^-1*a^-1*α
|
|||
|
@test New.evaluate(g) == # (a, b, c, d, α, β, γ, δ)
|
|||
|
(a, x*b*x^-1, c, d, α*x^-1, x*β, γ, δ)
|
|||
|
@test g == T[9]
|
|||
|
end
|
|||
|
|
|||
|
Base.conj(t::New.Transvection, p::Perm) =
|
|||
|
New.Transvection(t.id, t.i^p, t.j^p, t.inv)
|
|||
|
|
|||
|
function Base.conj(elt::New.FPGroupElement, p::Perm)
|
|||
|
G = parent(elt)
|
|||
|
A = New.alphabet(elt)
|
|||
|
return G([A[conj(A[idx], p)] for idx in New.word(elt)])
|
|||
|
end
|
|||
|
|
|||
|
@testset "Te₂₃ definition" begin
|
|||
|
Te₁₂, Te₂₃ = T[9], T[12]
|
|||
|
G = parent(Te₁₂)
|
|||
|
F₈ = New.object(G)
|
|||
|
(a, b, c, d, α, β, γ, δ) = gens(F₈)
|
|||
|
|
|||
|
img_Te₂₃ = New.evaluate(Te₂₃)
|
|||
|
y = c*β^-1*b^-1*β
|
|||
|
@test img_Te₂₃ == (a, b, y*c*y^-1, d, α, β*y^-1, y*γ, δ)
|
|||
|
|
|||
|
σ = perm"(1,2,3)(5,6,7)(8)"
|
|||
|
Te₂₃_σ = conj(Te₁₂, σ)
|
|||
|
# @test New.word(Te₂₃_σ) == New.word(Te₂₃)
|
|||
|
|
|||
|
@test New.evaluate(Te₂₃_σ) == New.evaluate(Te₂₃)
|
|||
|
@test Te₂₃ == Te₂₃_σ
|
|||
|
end
|
|||
|
|
|||
|
@testset "Te₃₄ definition" begin
|
|||
|
Te₁₂, Te₃₄ = T[9], T[14]
|
|||
|
G = parent(Te₁₂)
|
|||
|
F₈ = New.object(G)
|
|||
|
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
|
|||
|
|
|||
|
σ = perm"(1,3)(2,4)(5,7)(6,8)"
|
|||
|
Te₃₄_σ = conj(Te₁₂, σ)
|
|||
|
@test Te₃₄ == Te₃₄_σ
|
|||
|
end
|
|||
|
end
|