1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-13 14:27:32 +01:00
Groups.jl/test/AutFn.jl

188 lines
5.6 KiB
Julia
Raw Normal View History

@testset "Automorphisms" begin
@testset "Transvections" begin
@test Groups.Transvection(:ϱ, 1, 2) isa Groups.GSymbol
@test Groups.Transvection(:ϱ, 1, 2) isa Groups.Transvection
@test Groups.Transvection(, 1, 2) isa Groups.GSymbol
@test Groups.Transvection(, 1, 2) isa Groups.Transvection
t = Groups.Transvection(:ϱ, 1, 2)
@test inv(t) isa Groups.GSymbol
@test inv(t) isa Groups.Transvection
@test t != inv(t)
s = Groups.Transvection(:ϱ, 1, 2)
@test t == s
@test hash(t) == hash(s)
s_ = Groups.Transvection(:ϱ, 1, 3)
@test s_ != s
@test hash(s_) != hash(s)
@test Groups.gersten_alphabet(3) isa Alphabet
A = Groups.gersten_alphabet(3)
@test length(A) == 12
2021-06-21 17:53:29 +02:00
@test sprint(show, Groups.ϱ(1, 2)) == "ϱ₁.₂"
@test sprint(show, Groups.λ(3, 2)) == "λ₃.₂"
end
A4 = Alphabet(
[:a,:A,:b,:B,:c,:C,:d,:D],
[ 2, 1, 4, 3, 6, 5, 8, 7]
)
A5 = Alphabet(
[:a,:A,:b,:B,:c,:C,:d,:D,:e,:E],
[ 2, 1, 4, 3, 6, 5, 8, 7,10, 9]
)
F4 = FreeGroup([:a, :b, :c, :d], A4)
a,b,c,d = gens(F4)
D = ntuple(i->gens(F4, i), 4)
@testset "Transvection action correctness" begin
i,j = 1,2
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
2021-08-13 13:48:25 +02:00
(t::Groups.Transvection)(v::Tuple) = Groups.evaluate!(v, t)
@test r(deepcopy(D)) == (a*b, b, c, d)
@test inv(r)(deepcopy(D)) == (a*b^-1,b, c, d)
@test l(deepcopy(D)) == (b*a, b, c, d)
@test inv(l)(deepcopy(D)) == (b^-1*a,b, c, d)
i,j = 3,1
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b, c*a, d)
@test inv(r)(deepcopy(D)) == (a, b, c*a^-1,d)
@test l(deepcopy(D)) == (a, b, a*c, d)
@test inv(l)(deepcopy(D)) == (a, b, a^-1*c,d)
i,j = 4,3
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b, c, d*c)
@test inv(r)(deepcopy(D)) == (a, b, c, d*c^-1)
@test l(deepcopy(D)) == (a, b, c, c*d)
@test inv(l)(deepcopy(D)) == (a, b, c, c^-1*d)
i,j = 2,4
r = Groups.Transvection(:ϱ,i,j)
l = Groups.Transvection(,i,j)
@test r(deepcopy(D)) == (a, b*d, c, d)
@test inv(r)(deepcopy(D)) == (a, b*d^-1,c, d)
@test l(deepcopy(D)) == (a, d*b, c, d)
@test inv(l)(deepcopy(D)) == (a, d^-1*b,c, d)
end
A = SpecialAutomorphismGroup(F4, maxrules=1000)
2021-06-21 17:53:29 +02:00
@testset "AutomorphismGroup constructors" begin
@test A isa Groups.AbstractFPGroup
@test A isa AutomorphismGroup
@test alphabet(A) isa Alphabet
@test Groups.relations(A) isa Vector{<:Pair}
2021-06-21 17:53:29 +02:00
@test sprint(show, A) == "automorphism group of free group on 4 generators"
end
@testset "Automorphisms: hash and evaluate" begin
@test Groups.domain(gens(A, 1)) == D
g, h = gens(A, 1), gens(A, 8)
@test evaluate(g*h) == evaluate(h*g)
@test (g*h).savedhash == zero(UInt)
if VERSION >= v"1.6.0"
@test sprint(show, typeof(g)) == "Automorphism{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}"
end
2021-06-21 17:53:29 +02:00
a = g*h
b = h*g
@test hash(a) != zero(UInt)
@test hash(a) == hash(b)
@test a.savedhash == b.savedhash
@test length(unique([a,b])) == 1
@test length(unique([g*h, h*g])) == 1
# Not so simple arithmetic: applying starting on the left:
# ϱ₁₂*ϱ₂₁⁻¹*λ₁₂*ε₂ == σ₂₁₃₄
g = gens(A, 1)
x1, x2, x3, x4 = Groups.domain(g)
@test evaluate(g) == (x1*x2, x2, x3, x4)
g = g*inv(gens(A, 4)) # ϱ₂₁
@test evaluate(g) == (x1*x2, x1^-1, x3, x4)
g = g*gens(A, 13)
@test evaluate(g) == (x2, x1^-1, x3, x4)
end
@testset "Automorphisms: SAut(F₄)" begin
N = 4
G = SpecialAutomorphismGroup(FreeGroup(N))
S = gens(G)
@test S isa Vector{<:FPGroupElement{<:AutomorphismGroup{<:FreeGroup}}}
@test length(S) == 2*N*(N-1)
@test length(unique(S)) == length(S)
S_sym = [S; inv.(S)]
@test length(S_sym) == length(unique(S_sym))
pushfirst!(S_sym, one(G))
B_2 = [i*j for (i,j) in Base.product(S_sym, S_sym)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
@test all(g->isone(inv(g)*g), B_2)
@test all(g->isone(g*inv(g)), B_2)
end
2021-07-09 16:46:15 +02:00
@testset "Forward evaluate" begin
N = 3
F = FreeGroup(N)
G = SpecialAutomorphismGroup(F)
a = gens(G, 1) # ϱ₁₂
f = gens(F)
@test a(f[1]) == f[1]*f[2]
@test all(a(f[i]) == f[i] for i in 2:length(f))
S = let s = gens(G)
[s; inv.(s)]
end
@test all(
map(first(Groups.wlmetric_ball(S, radius=2))) do g
lm = Groups.LettersMap(g)
img = evaluate(g)
fimg = [F(lm[first(word(s))]) for s in gens(F)]
succeeded = all(img .== fimg)
@assert succeeded "forward evaluation of $(word(g)) failed: \n img=$img\n fimg=$(tuple(fimg...))"
succeeded
end
)
end
@testset "GroupsCore conformance" begin
test_Group_interface(A)
2021-06-21 19:14:42 +02:00
g = A(rand(1:length(alphabet(A)), 10))
h = A(rand(1:length(alphabet(A)), 10))
test_GroupElement_interface(g, h)
end
end