mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-04 20:30:29 +01:00
add DirectProducts and WreathProducts
This commit is contained in:
parent
17888437ff
commit
00f5fc1f23
248
src/DirectProducts.jl
Normal file
248
src/DirectProducts.jl
Normal file
@ -0,0 +1,248 @@
|
||||
module DirectProducts
|
||||
|
||||
using Nemo
|
||||
|
||||
import Base: show, ==, hash, deepcopy_internal
|
||||
import Base: ×, *, inv
|
||||
|
||||
import Nemo: parent, parent_type, elem_type
|
||||
import Nemo: elements, order, Group, GroupElem, Ring
|
||||
|
||||
export DirectProductGroup, DirectProductGroupElem
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# DirectProductGroup / DirectProductGroupElem
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
doc"""
|
||||
DirectProductGroup(factors::Vector{Group}) <: Group
|
||||
Implements direct product of groups as vector factors. The group operation is
|
||||
`*` distributed component-wise, with component-wise identity as neutral element.
|
||||
"""
|
||||
|
||||
type DirectProductGroup <: Group
|
||||
factors::Vector{Group}
|
||||
operations::Vector{Function}
|
||||
end
|
||||
|
||||
type DirectProductGroupElem <: GroupElem
|
||||
elts::Vector{GroupElem}
|
||||
parent::DirectProductGroup
|
||||
|
||||
DirectProductGroupElem{T<:GroupElem}(a::Vector{T}) = new(a)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Type and parent object methods
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
elem_type(G::DirectProductGroup) = DirectProductGroupElem
|
||||
|
||||
parent_type(::Type{DirectProductGroupElem}) = DirectProductGroup
|
||||
|
||||
parent(g::DirectProductGroupElem) = g.parent
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# DirectProductGroup / DirectProductGroupElem constructors
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
DirectProductGroup(G::Group, H::Group) = DirectProductGroup([G, H], Function[(*),(*)])
|
||||
|
||||
DirectProductGroup(G::Group, H::Ring) = DirectProductGroup([G, H], Function[(*),(+)])
|
||||
|
||||
DirectProductGroup(G::Ring, H::Group) = DirectProductGroup([G, H], Function[(+),(*)])
|
||||
|
||||
DirectProductGroup(G::Ring, H::Ring) = DirectProductGroup([G, H], Function[(+),(+)])
|
||||
|
||||
DirectProductGroup{T<:Ring}(X::Vector{T}) = DirectProductGroup(Group[X...], Function[(+) for _ in X])
|
||||
|
||||
×(G::Group, H::Group) = DirectProductGroup(G,H)
|
||||
|
||||
function DirectProductGroup{T<:Group, S<:Group}(G::Tuple{T, Function}, H::Tuple{S, Function})
|
||||
return DirectProductGroup([G[1], H[1]], Function[G[2],H[2]])
|
||||
end
|
||||
|
||||
function DirectProductGroup(groups::Vector)
|
||||
for G in groups
|
||||
typeof(G) <: Group || throw("$G is not a group!")
|
||||
end
|
||||
ops = Function[typeof(G) <: Ring ? (+) : (*) for G in groups]
|
||||
|
||||
return DirectProductGroup(groups, ops)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Parent object call overloads
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
(G::DirectProductGroup)() = G([H() for H in G.factors]; checked=false)
|
||||
|
||||
function (G::DirectProductGroup)(g::DirectProductGroupElem; checked=true)
|
||||
if checked
|
||||
return G(g.elts)
|
||||
else
|
||||
g.parent = G
|
||||
return g
|
||||
end
|
||||
end
|
||||
|
||||
doc"""
|
||||
(G::DirectProductGroup)(a::Vector; checked=true)
|
||||
> Constructs element of the direct product group `G` by coercing each element
|
||||
> of vector `a` to the corresponding factor of `G`. If `checked` flag is set to
|
||||
> `false` no checks on the correctness are performed.
|
||||
|
||||
"""
|
||||
function (G::DirectProductGroup)(a::Vector; checked=true)
|
||||
length(a) == length(G.factors) || throw("Cannot coerce $a to $G: they have
|
||||
different number of factors")
|
||||
if checked
|
||||
for (F,g) in zip(G.factors, a)
|
||||
try
|
||||
F(g)
|
||||
catch
|
||||
throw("Cannot coerce to $G: $g cannot be coerced to $F.")
|
||||
end
|
||||
end
|
||||
end
|
||||
elt = DirectProductGroupElem([F(g) for (F,g) in zip(G.factors, a)])
|
||||
elt.parent = G
|
||||
return elt
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Basic manipulation
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function deepcopy_internal(g::DirectProductGroupElem, dict::ObjectIdDict)
|
||||
G = parent(g)
|
||||
return G(deepcopy(g.elts))
|
||||
end
|
||||
|
||||
function hash(G::DirectProductGroup, h::UInt)
|
||||
return hash(G.factors, hash(G.operations, hash(DirectProductGroup,h)))
|
||||
end
|
||||
|
||||
function hash(g::DirectProductGroupElem, h::UInt)
|
||||
return hash(g.elts, hash(g.parent, hash(DirectProductGroupElem, h)))
|
||||
end
|
||||
|
||||
doc"""
|
||||
eye(G::DirectProductGroup)
|
||||
> Return the identity element for the given direct product of groups.
|
||||
|
||||
"""
|
||||
eye(G::DirectProductGroup) = G()
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# String I/O
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function show(io::IO, G::DirectProductGroup)
|
||||
println(io, "Direct product of groups")
|
||||
join(io, G.factors, ", ", " and ")
|
||||
end
|
||||
|
||||
function show(io::IO, g::DirectProductGroupElem)
|
||||
print(io, "("*join(g.elts,",")*")")
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Comparison
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function (==)(G::DirectProductGroup, H::DirectProductGroup)
|
||||
G.factors == H.factors || return false
|
||||
G.operations == H.operations || return false
|
||||
return true
|
||||
end
|
||||
|
||||
doc"""
|
||||
==(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
||||
> Return `true` if the given elements of direct products are equal, otherwise return `false`.
|
||||
|
||||
"""
|
||||
function (==)(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
||||
parent(g) == parent(h) || return false
|
||||
g.elts == h.elts || return false
|
||||
return true
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Binary operators
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function direct_mult(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
||||
parent(g) == parent(h) || throw("Can't multiply elements from different groups: $g, $h")
|
||||
G = parent(g)
|
||||
return G([op(a,b) for (op,a,b) in zip(G.operations, g.elts, h.elts)])
|
||||
end
|
||||
|
||||
doc"""
|
||||
*(g::DirectProductGroupElem, h::DirectProductGroupElem)
|
||||
> Return the direct-product group operation of elements, i.e. component-wise
|
||||
> operation as defined by `operations` field of the parent object.
|
||||
|
||||
"""
|
||||
(*)(g::DirectProductGroupElem, h::DirectProductGroupElem) = direct_mult(g,h)
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Inversion
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
doc"""
|
||||
inv(g::DirectProductGroupElem)
|
||||
> Return the inverse of the given element in the direct product group.
|
||||
|
||||
"""
|
||||
# TODO: dirty hack around `+` operation
|
||||
function inv(g::DirectProductGroupElem)
|
||||
G = parent(g)
|
||||
return G([(op == (*) ? inv(elt): -elt) for (op,elt) in zip(G.operations, g.elts)])
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Misc
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
doc"""
|
||||
elements(G::DirectProductGroup)
|
||||
> Returns `Task` that produces all elements of group `G` (provided that factors
|
||||
> implement the elements function).
|
||||
|
||||
"""
|
||||
# TODO: can Base.product handle generators?
|
||||
# now it returns nothing's so we have to collect ellements...
|
||||
function elements(G::DirectProductGroup)
|
||||
cartesian_prod = Base.product([collect(elements(H)) for H in G.factors]...)
|
||||
return (G(collect(elt)) for elt in cartesian_prod)
|
||||
end
|
||||
|
||||
doc"""
|
||||
order(G::DirectProductGroup)
|
||||
> Returns the order (number of elements) in the group.
|
||||
|
||||
"""
|
||||
order(G::DirectProductGroup) = prod([order(H) for H in G.factors])
|
||||
|
||||
end # of module DirectProduct
|
236
src/WreathProducts.jl
Normal file
236
src/WreathProducts.jl
Normal file
@ -0,0 +1,236 @@
|
||||
module WreathProducts
|
||||
|
||||
using Nemo
|
||||
using DirectProducts
|
||||
|
||||
import Base: convert, deepcopy_internal, show, isequal, ==, hash, size, inv
|
||||
import Base: +, -, *, //
|
||||
|
||||
import Nemo: Group, GroupElem, elem_type, parent_type, parent, elements, order
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# WreathProduct / WreathProductElem
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
doc"""
|
||||
WreathProduct <: Group
|
||||
> Implements Wreath product of a group N by permutation (sub)group P < Sₖ,
|
||||
> usually written as $N \wr P$.
|
||||
> The multiplication inside wreath product is defined as
|
||||
> (n, σ) * (m, τ) = (n*ψ(σ)(m), σ*τ),
|
||||
> where ψ:P → Aut(Nᵏ) is the permutation representation of Sₖ restricted to P.
|
||||
|
||||
# Arguments:
|
||||
* `::Group` : the single factor of group N
|
||||
* `::PermutationGroup` : full PermutationGroup
|
||||
"""
|
||||
|
||||
type WreathProduct <: Group
|
||||
N::DirectProductGroup
|
||||
P::PermutationGroup
|
||||
|
||||
function WreathProduct(G::Group, P::PermutationGroup)
|
||||
N = DirectProductGroup(typeof(G)[G for _ in 1:P.n])
|
||||
return new(N, P)
|
||||
end
|
||||
end
|
||||
|
||||
type WreathProductElem <: GroupElem
|
||||
n::DirectProductGroupElem
|
||||
p::perm
|
||||
parent::WreathProduct
|
||||
|
||||
function WreathProductElem(n::DirectProductGroupElem, p::perm)
|
||||
length(n.elts) == parent(p).n
|
||||
return new(n, p)
|
||||
end
|
||||
end
|
||||
|
||||
export WreathProduct, WreathProductElem
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Type and parent object methods
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
elem_type(::WreathProduct) = WreathProductElem
|
||||
|
||||
parent_type(::WreathProductElem) = WreathProduct
|
||||
|
||||
parent(g::WreathProductElem) = g.parent
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# WreathProduct / WreathProductElem constructors
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
# converts???
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Parent object call overloads
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function (G::WreathProduct)(g::WreathProductElem)
|
||||
try
|
||||
G.N(g.n)
|
||||
catch
|
||||
throw("Can't coerce $(g.n) to $(G.N) factor of $G")
|
||||
end
|
||||
try
|
||||
G.P(g.p)
|
||||
catch
|
||||
throw("Can't coerce $(g.p) to $(G.P) factor of $G")
|
||||
end
|
||||
elt = WreathProductElem(G.N(g.n), G.P(g.p))
|
||||
elt.parent = G
|
||||
return elt
|
||||
end
|
||||
|
||||
doc"""
|
||||
(G::WreathProduct)(n::DirectProductGroupElem, p::perm)
|
||||
> Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and
|
||||
> `G.P`, respectively.
|
||||
|
||||
"""
|
||||
function (G::WreathProduct)(n::DirectProductGroupElem, p::perm)
|
||||
result = WreathProductElem(n,p)
|
||||
result.parent = G
|
||||
return result
|
||||
end
|
||||
|
||||
(G::WreathProduct)() = G(G.N(), G.P())
|
||||
|
||||
doc"""
|
||||
(G::WreathProduct)(p::perm)
|
||||
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
|
||||
|
||||
"""
|
||||
(G::WreathProduct)(p::perm) = G(G.N(), p)
|
||||
|
||||
doc"""
|
||||
(G::WreathProduct)(n::DirectProductGroupElem)
|
||||
> Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the
|
||||
> embedding that makes sequence `1 -> N -> G -> P -> 1` exact.
|
||||
|
||||
"""
|
||||
(G::WreathProduct)(n::DirectProductGroupElem) = G(n, G.P())
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Basic manipulation
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function deepcopy_internal(g::WreathProductElem, dict::ObjectIdDict)
|
||||
G = parent(g)
|
||||
return G(deepcopy(g.n), deepcopy(g.p))
|
||||
end
|
||||
|
||||
function hash(G::WreathProduct, h::UInt)
|
||||
return hash(G.N, hash(G.P, hash(WreathProduct, h)))
|
||||
end
|
||||
|
||||
function hash(g::WreathProductElem, h::UInt)
|
||||
return hash(g.n, hash(g.p, hash(parent(g), h)))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# String I/O
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function show(io::IO, G::WreathProduct)
|
||||
print(io, "Wreath Product of $(G.N.factors[1]) and $(G.P)")
|
||||
end
|
||||
|
||||
function show(io::IO, g::WreathProductElem)
|
||||
# println(io, "Element of WreathProduct over $T of size $(size(X)):")
|
||||
# show(io, "text/plain", matrix_repr(X))
|
||||
print(io, "($(g.n)≀$(g.p))")
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Comparison
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function (==)(G::WreathProduct, H::WreathProduct)
|
||||
G.N == H.N || return false
|
||||
G.P == H.P || return false
|
||||
return true
|
||||
end
|
||||
|
||||
function (==)(g::WreathProductElem, h::WreathProductElem)
|
||||
parent(g) == parent(h) || return false
|
||||
g.n == h.n || return false
|
||||
g.p == h.p || return false
|
||||
return true
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Binary operators
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function wreath_multiplication(g::WreathProductElem, h::WreathProductElem)
|
||||
parent(g) == parent(h) || throw("Can not multiply elements from different
|
||||
groups!")
|
||||
G = parent(g)
|
||||
w=G.N((h.n).elts[inv(g.p).d])
|
||||
return G(g.n*w, g.p*h.p)
|
||||
end
|
||||
|
||||
doc"""
|
||||
*(g::WreathProductElem, h::WreathProductElem)
|
||||
> Return the wreath product group operation of elements, i.e.
|
||||
>
|
||||
> g*h = (g.n*g.p(h.n), g.p*h.p),
|
||||
>
|
||||
> where g.p(h.n) denotes the action of `g.p::perm` on
|
||||
> `h.n::DirectProductGroupElem` via standard permutation of coordinates.
|
||||
"""
|
||||
(*)(g::WreathProductElem, h::WreathProductElem) = wreath_multiplication(g,h)
|
||||
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Inversion
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
doc"""
|
||||
inv(g::WreathProductElem)
|
||||
> Returns the inverse of element of a wreath product, according to the formula
|
||||
> g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1).
|
||||
"""
|
||||
function inv(g::WreathProductElem)
|
||||
G = parent(g)
|
||||
w = G.N(inv(g.n).elts[g.p.d])
|
||||
return G(w, inv(g.p))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Misc
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
matrix_repr(g::WreathProductElem) = Any[matrix_repr(g.p) g.n]
|
||||
|
||||
function elements(G::WreathProduct)
|
||||
iter = Base.product(collect(elements(G.N)), collect(elements(G.P)))
|
||||
return (G(n)*G(p) for (n,p) in iter)
|
||||
end
|
||||
|
||||
order(G::WreathProduct) = order(G.P)*order(G.N)
|
||||
|
||||
end # of module WreatProduct
|
Loading…
Reference in New Issue
Block a user