mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-07 13:10:28 +01:00
update README
This commit is contained in:
parent
fe955850c3
commit
12f2ff92a7
110
README.md
110
README.md
@ -10,25 +10,25 @@ The package implements `AbstractFPGroup` with three concrete types: `FreeGroup`,
|
||||
julia> using Groups, GroupsCore
|
||||
|
||||
julia> A = Alphabet([:a, :A, :b, :B, :c, :C], [2, 1, 4, 3, 6, 5])
|
||||
Alphabet of Symbol:
|
||||
1. :a = (:A)⁻¹
|
||||
2. :A = (:a)⁻¹
|
||||
3. :b = (:B)⁻¹
|
||||
4. :B = (:b)⁻¹
|
||||
5. :c = (:C)⁻¹
|
||||
6. :C = (:c)⁻¹
|
||||
Alphabet of Symbol
|
||||
1. a (inverse of: A)
|
||||
2. A (inverse of: a)
|
||||
3. b (inverse of: B)
|
||||
4. B (inverse of: b)
|
||||
5. c (inverse of: C)
|
||||
6. C (inverse of: c)
|
||||
|
||||
julia> F = FreeGroup(A)
|
||||
free group on 3 generators
|
||||
|
||||
julia> a,b,c = gens(F)
|
||||
3-element Vector{FPGroupElement{FreeGroup{Symbol}, KnuthBendix.Word{UInt8}}}:
|
||||
3-element Vector{FPGroupElement{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}}:
|
||||
a
|
||||
b
|
||||
c
|
||||
|
||||
julia> a*inv(a)
|
||||
(empty word)
|
||||
(id)
|
||||
|
||||
julia> (a*b)^2
|
||||
a*b*a*b
|
||||
@ -40,65 +40,75 @@ julia> x = a*b; y = inv(b)*a;
|
||||
|
||||
julia> x*y
|
||||
a^2
|
||||
|
||||
```
|
||||
|
||||
## FPGroup
|
||||
Let's create a quotient of the free group above:
|
||||
```julia
|
||||
julia> ε = one(F);
|
||||
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ])
|
||||
┌ Warning: Maximum number of rules (100) reached. The rewriting system may not be confluent.
|
||||
│ You may retry `knuthbendix` with a larger `maxrules` kwarg.
|
||||
└ @ KnuthBendix ~/.julia/packages/KnuthBendix/i93Np/src/kbs.jl:6
|
||||
⟨a, b, c | a^2 => (empty word), b^3 => (empty word), a*b*a*b*a*b*a*b*a*b*a*b*a*b => (empty word), a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (empty word), A*C*a*c => (empty word), B*C*b*c => (empty word)⟩
|
||||
julia> ε = one(F)
|
||||
(id)
|
||||
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ], max_rules=100)
|
||||
┌ Warning: Maximum number of rules (100) reached.
|
||||
│ The rewriting system may not be confluent.
|
||||
│ You may retry `knuthbendix` with a larger `max_rules` kwarg.
|
||||
└ @ KnuthBendix ~/.julia/packages/KnuthBendix/6ME1b/src/knuthbendix_base.jl:8
|
||||
Finitely presented group generated by:
|
||||
{ a b c },
|
||||
subject to relations:
|
||||
a^2 => (id)
|
||||
b^3 => (id)
|
||||
a*b*a*b*a*b*a*b*a*b*a*b*a*b => (id)
|
||||
a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (id)
|
||||
A*C*a*c => (id)
|
||||
B*C*b*c => (id)
|
||||
```
|
||||
As you can see from the warning, the Knuth-Bendix procedure has not completed successfully. This means that we only are able to approximate the word problem in `G`, i.e. if the equality (`==`) of two group elements may return `false` even if group elements are equal. Let us try with a larger maximal number of rules in the underlying rewriting system.
|
||||
As you can see from the warning, the Knuth-Bendix procedure has not completed successfully. This means that we only are able to **approximate the word problem** in `G`, i.e. if the equality (`==`) of two group elements may return `false` even if group elements are equal. Let us try with a larger maximal number of rules in the underlying rewriting system.
|
||||
|
||||
```julia
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ], maxrules=500)
|
||||
⟨a, b, c | a^2 => (empty word), b^3 => (empty word), a*b*a*b*a*b*a*b*a*b*a*b*a*b => (empty word), a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (empty word), A*C*a*c => (empty word), B*C*b*c => (empty word)⟩
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ], max_rules=500)
|
||||
Finitely presented group generated by:
|
||||
{ a b c },
|
||||
subject to relations:
|
||||
a^2 => (id)
|
||||
b^3 => (id)
|
||||
a*b*a*b*a*b*a*b*a*b*a*b*a*b => (id)
|
||||
a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (id)
|
||||
A*C*a*c => (id)
|
||||
B*C*b*c => (id)
|
||||
|
||||
```
|
||||
This time there was no warning, i.e. Knuth-Bendix completion was successful and we may treat the equality (`==`) as true mathematical equality. Note that `G` is the direct product of `ℤ = ⟨ c ⟩` and a quotient of van Dyck `(2,3,7)`-group. Let's create a random word and reduce it as an element of `G`.
|
||||
This time there was no warning, i.e. Knuth-Bendix completion was successful and we may treat the equality (`==`) as the **true mathematical equality**. Note that `G` is the direct product of `ℤ = ⟨ c ⟩` and a quotient of van Dyck `(2,3,7)`-group. Let's create a random word and reduce it as an element of `G`.
|
||||
```julia
|
||||
julia> using Random; Random.seed!(1); w = Groups.Word(rand(1:length(A), 16))
|
||||
KnuthBendix.Word{UInt16}: 4·6·1·1·1·6·5·1·5·2·3·6·2·4·2·6
|
||||
julia> using Random; Random.seed!(1); w = Groups.Word(rand(1:length(A), 16));
|
||||
|
||||
julia> F(w) # freely reduced w
|
||||
B*C*a^4*c*A*b*C*A*B*A*C
|
||||
julia> length(w), w # word of itself
|
||||
(16, 1·3·5·4·6·2·5·5·5·2·4·3·2·1·4·4)
|
||||
|
||||
julia> G(w) # w as an element of G
|
||||
B*a*b*a*B*a*C^2
|
||||
julia> f = F(w) # freely reduced w
|
||||
a*b*c*B*C*A*c^3*A*B^2
|
||||
|
||||
julia> F(w) # freely reduced w
|
||||
B*C*a^4*c*A*b*C*A*B*A*C
|
||||
julia> length(word(f)), word(f) # the underlying word in F
|
||||
(12, 1·3·5·4·6·2·5·5·5·2·4·4)
|
||||
|
||||
julia> word(ans) # the underlying word in A
|
||||
KnuthBendix.Word{UInt8}: 4·6·1·1·1·1·5·2·3·6·2·4·2·6
|
||||
|
||||
julia> G(w) # w as an element of G
|
||||
B*a*b*a*B*a*C^2
|
||||
|
||||
julia> word(ans) # the underlying word in A
|
||||
KnuthBendix.Word{UInt8}: 4·1·3·1·4·1·6·6
|
||||
julia> g = G(w) # w as an element of G
|
||||
a*b*c^3
|
||||
|
||||
julia> length(word(g)), word(g) # the underlying word in G
|
||||
(5, 1·3·5·5·5)
|
||||
```
|
||||
As we can see the underlying words change according to where they are reduced.
|
||||
Note that a word `w` (of type `Word <: AbstractWord`) is just a sequence of numbers -- pointers to letters of an `Alphabet`. Without the alphabet `w` has no meaning.
|
||||
Note that a word `w` (of type `Word <: AbstractWord`) is just a sequence of numbers -- indices of letters of an `Alphabet`. Without the alphabet `w` has no intrinsic meaning.
|
||||
|
||||
### Automorphism Groups
|
||||
## Automorphism Groups
|
||||
|
||||
Relatively complete is the support for the automorphisms of free groups, as given by Gersten presentation:
|
||||
Relatively complete is the support for the automorphisms of free groups generated by transvections (or Nielsen generators):
|
||||
```julia
|
||||
julia> saut = SpecialAutomorphismGroup(F, maxrules=100)
|
||||
┌ Warning: Maximum number of rules (100) reached. The rewriting system may not be confluent.
|
||||
│ You may retry `knuthbendix` with a larger `maxrules` kwarg.
|
||||
└ @ KnuthBendix ~/.julia/packages/KnuthBendix/i93Np/src/kbs.jl:6
|
||||
julia> saut = SpecialAutomorphismGroup(F, max_rules=1000)
|
||||
automorphism group of free group on 3 generators
|
||||
|
||||
julia> S = gens(saut)
|
||||
12-element Vector{Automorphism{FreeGroup{Symbol},…}}:
|
||||
12-element Vector{Automorphism{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}}:
|
||||
ϱ₁.₂
|
||||
ϱ₁.₃
|
||||
ϱ₂.₁
|
||||
@ -114,17 +124,15 @@ julia> S = gens(saut)
|
||||
|
||||
julia> x, y, z = S[1], S[12], S[6];
|
||||
|
||||
julia> f = x*y*inv(z)
|
||||
ϱ₁.₂*λ₃.₂*ϱ₃.₂^-1
|
||||
julia> f = x*y*inv(z);
|
||||
|
||||
julia> g = inv(z)*y*x
|
||||
ϱ₃.₂^-1*ϱ₁.₂*λ₃.₂
|
||||
julia> g = inv(z)*y*x;
|
||||
|
||||
julia> word(f), word(g)
|
||||
(KnuthBendix.Word{UInt8}: 1·12·18, KnuthBendix.Word{UInt8}: 18·1·12)
|
||||
(1·23·12, 12·23·1)
|
||||
|
||||
```
|
||||
Even though Knuth-Bendix did not finish successfully in automorphism groups we have another ace in our sleeve to solve the word problem: evaluation.
|
||||
Even though there is no known finite, confluent rewriting system for automorphism groupsof the free group (so Knuth-Bendix did not finish successfully) we have another ace in our sleeve to solve the word problem: evaluation.
|
||||
Lets have a look at the images of generators under those automorphisms:
|
||||
```julia
|
||||
julia> evaluate(f) # or to be more verbose...
|
||||
|
Loading…
Reference in New Issue
Block a user