1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-11 22:07:33 +01:00

renumerate Dehn Twists

This commit is contained in:
Marek Kaluba 2021-07-21 16:26:22 +02:00
parent 596744e5b8
commit 156e4a2af3
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 39 additions and 80 deletions

View File

@ -13,7 +13,7 @@ function Base.getindex(rl::ΡΛ, i::Integer, j::Integer)
rl.id == :ϱ && return Word([rl.A[ϱ(i, j)]])
end
function Te_diagonal(λ::ΡΛ, ϱ::ΡΛ, i::Integer)
function Te_diagonal(λ::Groups.ΡΛ, ϱ::Groups.ΡΛ, i::Integer)
@assert λ.N == ϱ.N
@assert λ.id == && ϱ.id == :ϱ
@ -25,15 +25,20 @@ function Te_diagonal(λ::ΡΛ, ϱ::ΡΛ, i::Integer)
A = λ.A
# comments are for i,j = 1,2
NI = (2n - 2i) + 1
NJ = (2n - 2j) + 1
I = (2n - 2i) + 2
J = (2n - 2j) + 2
g = one(Word(Int[]))
g *= λ[n+j, n+i] # β ↦ α
g *= λ[n+i, i] * inv(A, ϱ[n+i, j]) # α ↦ a*α*b^-1
g *= inv(A, λ[n+j, n+i]) # β ↦ b*α^-1*a^-1*α
g *= λ[j, n+i] * inv(A, λ[j, i]) # b ↦ α
g *= inv(A, λ[j, n+i]) # b ↦ b*α^-1*a^-1*α
g *= inv(A, ϱ[j, n+i]) * ϱ[j, i] # b ↦ b*α^-1*a^-1*α*b*α^-1
g *= ϱ[j, n+i] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
g *= λ[NJ, NI] # β ↦ α
g *= λ[NI, I] * inv(A, ϱ[NI, J]) # α ↦ a*α*b^-1
g *= inv(A, λ[NJ, NI]) # β ↦ b*α^-1*a^-1*α
g *= λ[J, NI] * inv(A, λ[J, I]) # b ↦ α
g *= inv(A, λ[J, NI]) # b ↦ b*α^-1*a^-1*α
g *= inv(A, ϱ[J, NI]) * ϱ[J, I] # b ↦ b*α^-1*a^-1*α*b*α^-1
g *= ϱ[J, NI] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
return g
end
@ -45,10 +50,10 @@ function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a
return inv(A, Y) * b₁ * Y # b₂
end
Ta(λ::ΡΛ, i::Integer) = (@assert λ.id == ;
λ[λ.N÷2+i, i])
Tα(λ::ΡΛ, i::Integer) = (@assert λ.id == ;
inv(λ.A, λ[i, λ.N÷2+i]))
Ta(λ::Groups.ΡΛ, i::Integer) = (@assert λ.id == ; λ[λ.N-2i+1, λ.N-2i+2])
Tα(λ::Groups.ΡΛ, i::Integer) = (@assert λ.id == ; inv(λ.A, λ[λ.N-2i+2, λ.N-2i+1]))
function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
@assert i j

View File

@ -7,6 +7,8 @@ using Groups.KnuthBendix
G = SpecialAutomorphismGroup(FreeGroup(2genus))
T = Groups.mcg_twists(autF)
# symplectic pairing in the free Group goes like this:
# f1 ↔ f5
# f2 ↔ f6
@ -43,8 +45,8 @@ using Groups.KnuthBendix
@testset "preserving relator" begin
F = Groups.object(G)
R = prod(commutator(gens(F, i), gens(F, i+genus)) for i in 1:genus)
R = prod(commutator(gens(F,2i+1), gens(F,2i+2)) for i in 0:genus-1)
for g in T
@test g(R) == R
end
@ -88,19 +90,17 @@ using Groups.KnuthBendix
# some additional tests, checking what explicitly happens to the generators of the π₁ under b2
d = Groups.domain(b2)
im = evaluate(b2)
z = im[7] * d[7]^-1
@test im[1] == d[1]
@test im[2] == z * d[2] * z^-1
@test im[3] == z * d[3] * z^-1
@test im[4] == d[4]
@test im[5] == d[5] * z^-1
@test im[6] == z * d[6] * z^-1
@test im[7] == z * d[7]
@test im[8] == d[8]
img = evaluate(b2)
z = img[3] * d[3]^-1
@test img[1] == d[1]
@test img[2] == d[2]
@test img[3] == z * d[3]
@test img[4] == z * d[4] * z^-1
@test img[5] == z * d[5] * z^-1
@test img[6] == z * d[6] * z^-1
@test img[7] == d[7] * z^-1
@test img[8] == d[8]
end
@testset "b2: commutation relations" begin
@ -128,54 +128,6 @@ using Groups.KnuthBendix
end
end
@testset "Te₁₂ definition" begin
G = parent(first(T))
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
A = alphabet(G)
λ = [i == j ? one(G) : G([A[Groups.λ(i, j)]]) for i in 1:8, j in 1:8]
ϱ = [i == j ? one(G) : G([A[Groups.ϱ(i, j)]]) for i in 1:8, j in 1:8]
g = one(G)
# β ↦ α
g *= λ[6, 5]
@test evaluate(g)[6] == α * β
# α ↦ a*α*b^-1
g *= λ[5, 1] * inv(ϱ[5, 2])
@test evaluate(g)[5] == a * α * b^-1
# β ↦ b*α^-1*a^-1*α
g *= inv(λ[6, 5])
@test evaluate(g)[6] == b * α^-1 * a^-1 * α * β
# b ↦ α
g *= λ[2, 5] * inv(λ[2, 1])
@test evaluate(g)[2] == α
# b ↦ b*α^-1*a^-1*α
g *= inv(λ[2, 5])
@test evaluate(g)[2] == b * α^-1 * a^-1 * α
# b ↦ b*α^-1*a^-1*α*b*α^-1
g *= inv(ϱ[2, 5]) * ϱ[2, 1]
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1
# b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
g *= ϱ[2, 5]
@test evaluate(g)[2] == b * α^-1 * a^-1 * α * b * α^-1 * a * α * b^-1
x = b * α^-1 * a^-1 * α
@test evaluate(g) ==
(a, x * b * x^-1, c, d, α * x^-1, x * β, γ, δ)
# (a, b, c, d, α, β, γ, δ)
@test g == T[9]
end
Base.conj(t::Groups.Transvection, p::Perm) =
Groups.Transvection(t.id, t.i^p, t.j^p, t.inv)
@ -189,13 +141,15 @@ using Groups.KnuthBendix
Te₁₂, Te₂₃ = T[9], T[12]
G = parent(Te₁₂)
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
(δ, d, γ, c, β, b, α, a) = Groups.gens(F₈)
Groups.domain(Te₁₂)
img_Te₂₃ = evaluate(Te₂₃)
y = c * β^-1 * b^-1 * β
@test img_Te₂₃ == (a, b, y * c * y^-1, d, α, β * y^-1, y * γ, δ)
@test img_Te₂₃ == (δ, d, y * γ, y * c * y^-1, β * y^-1, b, α, a)
σ = perm"(1,2,3)(5,6,7)(8)"
σ = perm"(7,5,3)(8,6,4)"
Te₂₃_σ = conj(Te₁₂, σ)
# @test word(Te₂₃_σ) == word(Te₂₃)
@ -207,9 +161,9 @@ using Groups.KnuthBendix
Te₁₂, Te₃₄ = T[9], T[14]
G = parent(Te₁₂)
F₈ = Groups.object(G)
(a, b, c, d, α, β, γ, δ) = Groups.gens(F₈)
(δ, d, γ, c, β, b, α, a) = Groups.gens(F₈)
σ = perm"(1,3)(2,4)(5,7)(6,8)"
σ = perm"(7,3)(8,4)(5,1)(6,2)"
Te₃₄_σ = conj(Te₁₂, σ)
@test Te₃₄ == Te₃₄_σ
end