mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-11 14:02:33 +01:00
replace Nemo -> AbstractAlgebra
This commit is contained in:
parent
7663381084
commit
158ce5ee27
@ -19,7 +19,7 @@ struct FlipAut{I<:Integer}
|
||||
end
|
||||
|
||||
struct PermAut{I<:Integer}
|
||||
perm::Nemo.Generic.perm{I}
|
||||
perm::Generic.perm{I}
|
||||
end
|
||||
|
||||
struct Identity end
|
||||
|
@ -1,10 +1,10 @@
|
||||
__precompile__()
|
||||
module Groups
|
||||
|
||||
using Nemo
|
||||
import Nemo: Group, GroupElem, Ring
|
||||
import Nemo: parent, parent_type, elem_type
|
||||
import Nemo: elements, order, gens, matrix_repr
|
||||
using AbstractAlgebra
|
||||
import AbstractAlgebra: Group, GroupElem, Ring
|
||||
import AbstractAlgebra: parent, parent_type, elem_type
|
||||
import AbstractAlgebra: elements, order, gens, matrix_repr
|
||||
|
||||
import Base: length, ==, hash, show, convert
|
||||
import Base: inv, reduce, *, ^
|
||||
|
@ -1,5 +1,4 @@
|
||||
@testset "Automorphisms" begin
|
||||
using Nemo
|
||||
G = PermutationGroup(Int8(4))
|
||||
|
||||
@testset "AutSymbol" begin
|
||||
@ -14,7 +13,7 @@
|
||||
@test isa(Groups.flip_autsymbol(3), Groups.AutSymbol)
|
||||
end
|
||||
|
||||
a,b,c,d = Nemo.gens(FreeGroup(4))
|
||||
a,b,c,d = gens(FreeGroup(4))
|
||||
D = NTuple{4,FreeGroupElem}([a,b,c,d])
|
||||
|
||||
@testset "flip_autsymbol correctness" begin
|
||||
@ -85,16 +84,16 @@
|
||||
f = Groups.AutSymbol("a", 1, Groups.FlipAut(1))
|
||||
@test isa(Automorphism{3}(f), Groups.GWord)
|
||||
@test isa(Automorphism{3}(f), Automorphism)
|
||||
@test isa(AutGroup(FreeGroup(3)), Nemo.Group)
|
||||
@test isa(AutGroup(FreeGroup(3)), Group)
|
||||
@test isa(AutGroup(FreeGroup(1)), Groups.AbstractFPGroup)
|
||||
A = AutGroup(FreeGroup(1))
|
||||
@test isa(Nemo.gens(A), Vector{Automorphism{1}})
|
||||
@test length(Nemo.gens(A)) == 1
|
||||
@test isa(gens(A), Vector{Automorphism{1}})
|
||||
@test length(gens(A)) == 1
|
||||
A = AutGroup(FreeGroup(1), special=true)
|
||||
@test length(Nemo.gens(A)) == 0
|
||||
@test length(gens(A)) == 0
|
||||
A = AutGroup(FreeGroup(2))
|
||||
@test length(Nemo.gens(A)) == 7
|
||||
gens = Nemo.gens(A)
|
||||
@test length(gens(A)) == 7
|
||||
gens = gens(A)
|
||||
|
||||
@test isa(A(Groups.rmul_autsymbol(1,2)), Automorphism)
|
||||
@test A(Groups.rmul_autsymbol(1,2)) in gens
|
||||
@ -147,7 +146,7 @@
|
||||
b = Groups.flip_autsymbol(2)*A(inv(Groups.rmul_autsymbol(1,2)))
|
||||
@test a*b == b*a
|
||||
@test a^3 * b^3 == A()
|
||||
g,h = Nemo.gens(A)[[1,8]] # (g, h) = (ϱ₁₂, ϱ₃₂)
|
||||
g,h = gens(A)[[1,8]] # (g, h) = (ϱ₁₂, ϱ₃₂)
|
||||
|
||||
@test Groups.domain(A) == NTuple{4, FreeGroupElem}(gens(A.objectGroup))
|
||||
|
||||
@ -193,13 +192,13 @@
|
||||
@test isa(S, Vector{Groups.AutSymbol})
|
||||
S = [G(s) for s in unique(S)]
|
||||
@test isa(S, Vector{Automorphism{N}})
|
||||
@test S == Nemo.gens(G)
|
||||
@test S == gens(G)
|
||||
@test length(S) == 51
|
||||
S_inv = [S..., [inv(s) for s in S]...]
|
||||
@test length(unique(S_inv)) == 75
|
||||
|
||||
G = AutGroup(FreeGroup(N), special=true)
|
||||
S = Nemo.gens(G)
|
||||
S = gens(G)
|
||||
S_inv = [G(), S..., [inv(s) for s in S]...]
|
||||
S_inv = unique(S_inv)
|
||||
B_2 = [i*j for (i,j) in Base.product(S_inv, S_inv)]
|
||||
|
@ -1,13 +1,12 @@
|
||||
@testset "DirectProducts" begin
|
||||
using Nemo
|
||||
|
||||
G = PermutationGroup(3)
|
||||
g = G([2,3,1])
|
||||
F, a = FiniteField(2,3,"a")
|
||||
|
||||
@testset "Constructors" begin
|
||||
@test isa(Groups.DirectProductGroup(G,2), Nemo.Group)
|
||||
@test isa(G×G, Nemo.Group)
|
||||
@test isa(Groups.DirectProductGroup(G,2), AbstractArray.Group)
|
||||
@test isa(G×G, AbstractAlgebra.Group)
|
||||
@test isa(Groups.DirectProductGroup(G,2), Groups.DirectProductGroup{Generic.PermGroup{Int64}})
|
||||
|
||||
GG = Groups.DirectProductGroup(G,2)
|
||||
|
@ -41,18 +41,18 @@ end
|
||||
end
|
||||
|
||||
@testset "FreeGroup" begin
|
||||
@test isa(FreeGroup(["s", "t"]), Nemo.Group)
|
||||
@test isa(FreeGroup(["s", "t"]), Group)
|
||||
G = FreeGroup(["s", "t"])
|
||||
|
||||
@testset "elements constructors" begin
|
||||
@test isa(G(), FreeGroupElem)
|
||||
@test eltype(G.gens) == Groups.FreeSymbol
|
||||
@test length(G.gens) == 2
|
||||
@test eltype(Nemo.gens(G)) == FreeGroupElem
|
||||
@test length(Nemo.gens(G)) == 2
|
||||
@test eltype(gens(G)) == FreeGroupElem
|
||||
@test length(gens(G)) == 2
|
||||
end
|
||||
|
||||
s, t = Nemo.gens(G)
|
||||
s, t = gens(G)
|
||||
|
||||
@testset "internal arithmetic" begin
|
||||
|
||||
@ -130,7 +130,7 @@ end
|
||||
@test Groups.replace_all(s*c*s*c*s, subst) == s*t^4*s*t^4*s
|
||||
|
||||
G = FreeGroup(["x", "y"])
|
||||
x,y = Nemo.gens(G)
|
||||
x,y = gens(G)
|
||||
|
||||
@test Groups.replace(x*y^9, 2, y^2, y) == x*y^8
|
||||
@test Groups.replace(x^3, 1, x^2, y) == x*y
|
||||
|
@ -4,13 +4,13 @@
|
||||
b = S_3([2,3,1])
|
||||
|
||||
@testset "Constructors" begin
|
||||
@test isa(Groups.WreathProduct(F, S_3), Nemo.Group)
|
||||
@test isa(Groups.WreathProduct(F, S_3), AbstractAlgebra.Group)
|
||||
@test isa(Groups.WreathProduct(F, S_3), Groups.WreathProduct)
|
||||
@test isa(Groups.WreathProduct(F, S_3), Groups.WreathProduct{Nemo.FqNmodFiniteField})
|
||||
@test isa(Groups.WreathProduct(F, S_3), Groups.WreathProduct{AbstractAlgebra.FqNmodFiniteField})
|
||||
|
||||
aa = Groups.DirectProductGroupElem([a^0 ,a, a^2])
|
||||
|
||||
@test isa(Groups.WreathProductElem(aa, b), Nemo.GroupElem)
|
||||
@test isa(Groups.WreathProductElem(aa, b), AbstractAlgebra.GroupElem)
|
||||
@test isa(Groups.WreathProductElem(aa, b), Groups.WreathProductElem)
|
||||
@test isa(Groups.WreathProductElem(aa, b), Groups.WreathProductElem{typeof(a)})
|
||||
|
||||
|
@ -1,5 +1,6 @@
|
||||
using Groups
|
||||
using Base.Test
|
||||
using AbstractAlgebra
|
||||
using Groups
|
||||
|
||||
@testset "Groups" begin
|
||||
include("FreeGroup-tests.jl")
|
||||
|
Loading…
Reference in New Issue
Block a user