mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-28 08:45:27 +01:00
Merge pull request #24 from kalmarek/mk/update_to_KB_0.4
update to KnuthBendix-0.4
This commit is contained in:
commit
161c146642
13
.github/workflows/CompatHelper.yml
vendored
Normal file
13
.github/workflows/CompatHelper.yml
vendored
Normal file
@ -0,0 +1,13 @@
|
||||
name: CompatHelper
|
||||
on:
|
||||
schedule:
|
||||
- cron: 0 0 * * *
|
||||
workflow_dispatch:
|
||||
jobs:
|
||||
CompatHelper:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: JuliaRegistries/compathelper-action@v1
|
||||
with:
|
||||
token: ${{ secrets.GITHUB_TOKEN }}
|
||||
ssh: ${{ secrets.DOCUMENTER_KEY }}
|
5
.github/workflows/TagBot.yml
vendored
5
.github/workflows/TagBot.yml
vendored
@ -4,6 +4,11 @@ on:
|
||||
types:
|
||||
- created
|
||||
workflow_dispatch:
|
||||
inputs:
|
||||
lookback:
|
||||
default: 3
|
||||
permissions:
|
||||
contents: write
|
||||
jobs:
|
||||
TagBot:
|
||||
if: github.event_name == 'workflow_dispatch' || github.actor == 'JuliaTagBot'
|
||||
|
@ -1,11 +1,7 @@
|
||||
name: CI
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- master
|
||||
pull_request:
|
||||
branches:
|
||||
- master
|
||||
- pull_request
|
||||
- push
|
||||
jobs:
|
||||
test:
|
||||
name: Julia ${{ matrix.version }} - ${{ matrix.os }} - ${{ matrix.arch }}
|
||||
@ -22,21 +18,31 @@ jobs:
|
||||
- windows-latest
|
||||
arch:
|
||||
- x64
|
||||
allow_failures:
|
||||
- julia: nightly
|
||||
fail-fast: false
|
||||
|
||||
steps:
|
||||
- uses: actions/checkout@v2
|
||||
- uses: actions/checkout@v3
|
||||
- uses: julia-actions/setup-julia@v1
|
||||
with:
|
||||
version: ${{ matrix.version }}
|
||||
arch: ${{ matrix.arch }}
|
||||
- uses: actions/cache@v3
|
||||
env:
|
||||
cache-name: cache-artifacts
|
||||
with:
|
||||
path: ~/.julia/artifacts
|
||||
key: ${{ runner.os }}-test-${{ env.cache-name }}-${{ hashFiles('**/Project.toml') }}
|
||||
restore-keys: |
|
||||
${{ runner.os }}-test-${{ env.cache-name }}-
|
||||
${{ runner.os }}-test-
|
||||
${{ runner.os }}-
|
||||
- uses: julia-actions/julia-buildpkg@latest
|
||||
- uses: julia-actions/julia-runtest@latest
|
||||
- uses: julia-actions/julia-processcoverage@v1
|
||||
- uses: codecov/codecov-action@v1
|
||||
- uses: codecov/codecov-action@v2
|
||||
with:
|
||||
file: ./lcov.info
|
||||
flags: unittests
|
||||
name: codecov-umbrella
|
||||
fail_ci_if_error: false
|
||||
token: ${{ secrets.CODECOV_TOKEN }}
|
@ -1,7 +1,7 @@
|
||||
name = "Groups"
|
||||
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
||||
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
||||
version = "0.7.3"
|
||||
version = "0.7.4"
|
||||
|
||||
[deps]
|
||||
Folds = "41a02a25-b8f0-4f67-bc48-60067656b558"
|
||||
@ -16,7 +16,7 @@ StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
[compat]
|
||||
Folds = "0.2.7"
|
||||
GroupsCore = "0.4"
|
||||
KnuthBendix = "0.3"
|
||||
KnuthBendix = "0.4"
|
||||
OrderedCollections = "1"
|
||||
PermutationGroups = "0.3"
|
||||
StaticArrays = "1"
|
||||
|
110
README.md
110
README.md
@ -10,25 +10,25 @@ The package implements `AbstractFPGroup` with three concrete types: `FreeGroup`,
|
||||
julia> using Groups, GroupsCore
|
||||
|
||||
julia> A = Alphabet([:a, :A, :b, :B, :c, :C], [2, 1, 4, 3, 6, 5])
|
||||
Alphabet of Symbol:
|
||||
1. :a = (:A)⁻¹
|
||||
2. :A = (:a)⁻¹
|
||||
3. :b = (:B)⁻¹
|
||||
4. :B = (:b)⁻¹
|
||||
5. :c = (:C)⁻¹
|
||||
6. :C = (:c)⁻¹
|
||||
Alphabet of Symbol
|
||||
1. a (inverse of: A)
|
||||
2. A (inverse of: a)
|
||||
3. b (inverse of: B)
|
||||
4. B (inverse of: b)
|
||||
5. c (inverse of: C)
|
||||
6. C (inverse of: c)
|
||||
|
||||
julia> F = FreeGroup(A)
|
||||
free group on 3 generators
|
||||
|
||||
julia> a,b,c = gens(F)
|
||||
3-element Vector{FPGroupElement{FreeGroup{Symbol}, KnuthBendix.Word{UInt8}}}:
|
||||
3-element Vector{FPGroupElement{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}}:
|
||||
a
|
||||
b
|
||||
c
|
||||
|
||||
julia> a*inv(a)
|
||||
(empty word)
|
||||
(id)
|
||||
|
||||
julia> (a*b)^2
|
||||
a*b*a*b
|
||||
@ -40,65 +40,75 @@ julia> x = a*b; y = inv(b)*a;
|
||||
|
||||
julia> x*y
|
||||
a^2
|
||||
|
||||
```
|
||||
|
||||
## FPGroup
|
||||
Let's create a quotient of the free group above:
|
||||
```julia
|
||||
julia> ε = one(F);
|
||||
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ])
|
||||
┌ Warning: Maximum number of rules (100) reached. The rewriting system may not be confluent.
|
||||
│ You may retry `knuthbendix` with a larger `maxrules` kwarg.
|
||||
└ @ KnuthBendix ~/.julia/packages/KnuthBendix/i93Np/src/kbs.jl:6
|
||||
⟨a, b, c | a^2 => (empty word), b^3 => (empty word), a*b*a*b*a*b*a*b*a*b*a*b*a*b => (empty word), a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (empty word), A*C*a*c => (empty word), B*C*b*c => (empty word)⟩
|
||||
julia> ε = one(F)
|
||||
(id)
|
||||
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ], max_rules=100)
|
||||
┌ Warning: Maximum number of rules (100) reached.
|
||||
│ The rewriting system may not be confluent.
|
||||
│ You may retry `knuthbendix` with a larger `max_rules` kwarg.
|
||||
└ @ KnuthBendix ~/.julia/packages/KnuthBendix/6ME1b/src/knuthbendix_base.jl:8
|
||||
Finitely presented group generated by:
|
||||
{ a b c },
|
||||
subject to relations:
|
||||
a^2 => (id)
|
||||
b^3 => (id)
|
||||
a*b*a*b*a*b*a*b*a*b*a*b*a*b => (id)
|
||||
a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (id)
|
||||
A*C*a*c => (id)
|
||||
B*C*b*c => (id)
|
||||
```
|
||||
As you can see from the warning, the Knuth-Bendix procedure has not completed successfully. This means that we only are able to approximate the word problem in `G`, i.e. if the equality (`==`) of two group elements may return `false` even if group elements are equal. Let us try with a larger maximal number of rules in the underlying rewriting system.
|
||||
As you can see from the warning, the Knuth-Bendix procedure has not completed successfully. This means that we only are able to **approximate the word problem** in `G`, i.e. if the equality (`==`) of two group elements may return `false` even if group elements are equal. Let us try with a larger maximal number of rules in the underlying rewriting system.
|
||||
|
||||
```julia
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ], maxrules=500)
|
||||
⟨a, b, c | a^2 => (empty word), b^3 => (empty word), a*b*a*b*a*b*a*b*a*b*a*b*a*b => (empty word), a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (empty word), A*C*a*c => (empty word), B*C*b*c => (empty word)⟩
|
||||
julia> G = FPGroup(F, [a^2 => ε, b^3=> ε, (a*b)^7=>ε, (a*b*a*inv(b))^6 => ε, commutator(a, c) => ε, commutator(b, c) => ε ], max_rules=500)
|
||||
Finitely presented group generated by:
|
||||
{ a b c },
|
||||
subject to relations:
|
||||
a^2 => (id)
|
||||
b^3 => (id)
|
||||
a*b*a*b*a*b*a*b*a*b*a*b*a*b => (id)
|
||||
a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B*a*b*a*B => (id)
|
||||
A*C*a*c => (id)
|
||||
B*C*b*c => (id)
|
||||
|
||||
```
|
||||
This time there was no warning, i.e. Knuth-Bendix completion was successful and we may treat the equality (`==`) as true mathematical equality. Note that `G` is the direct product of `ℤ = ⟨ c ⟩` and a quotient of van Dyck `(2,3,7)`-group. Let's create a random word and reduce it as an element of `G`.
|
||||
This time there was no warning, i.e. Knuth-Bendix completion was successful and we may treat the equality (`==`) as the **true mathematical equality**. Note that `G` is the direct product of `ℤ = ⟨ c ⟩` and a quotient of van Dyck `(2,3,7)`-group. Let's create a random word and reduce it as an element of `G`.
|
||||
```julia
|
||||
julia> using Random; Random.seed!(1); w = Groups.Word(rand(1:length(A), 16))
|
||||
KnuthBendix.Word{UInt16}: 4·6·1·1·1·6·5·1·5·2·3·6·2·4·2·6
|
||||
julia> using Random; Random.seed!(1); w = Groups.Word(rand(1:length(A), 16));
|
||||
|
||||
julia> F(w) # freely reduced w
|
||||
B*C*a^4*c*A*b*C*A*B*A*C
|
||||
julia> length(w), w # word of itself
|
||||
(16, 1·3·5·4·6·2·5·5·5·2·4·3·2·1·4·4)
|
||||
|
||||
julia> G(w) # w as an element of G
|
||||
B*a*b*a*B*a*C^2
|
||||
julia> f = F(w) # freely reduced w
|
||||
a*b*c*B*C*A*c^3*A*B^2
|
||||
|
||||
julia> F(w) # freely reduced w
|
||||
B*C*a^4*c*A*b*C*A*B*A*C
|
||||
julia> length(word(f)), word(f) # the underlying word in F
|
||||
(12, 1·3·5·4·6·2·5·5·5·2·4·4)
|
||||
|
||||
julia> word(ans) # the underlying word in A
|
||||
KnuthBendix.Word{UInt8}: 4·6·1·1·1·1·5·2·3·6·2·4·2·6
|
||||
|
||||
julia> G(w) # w as an element of G
|
||||
B*a*b*a*B*a*C^2
|
||||
|
||||
julia> word(ans) # the underlying word in A
|
||||
KnuthBendix.Word{UInt8}: 4·1·3·1·4·1·6·6
|
||||
julia> g = G(w) # w as an element of G
|
||||
a*b*c^3
|
||||
|
||||
julia> length(word(g)), word(g) # the underlying word in G
|
||||
(5, 1·3·5·5·5)
|
||||
```
|
||||
As we can see the underlying words change according to where they are reduced.
|
||||
Note that a word `w` (of type `Word <: AbstractWord`) is just a sequence of numbers -- pointers to letters of an `Alphabet`. Without the alphabet `w` has no meaning.
|
||||
Note that a word `w` (of type `Word <: AbstractWord`) is just a sequence of numbers -- indices of letters of an `Alphabet`. Without the alphabet `w` has no intrinsic meaning.
|
||||
|
||||
### Automorphism Groups
|
||||
## Automorphism Groups
|
||||
|
||||
Relatively complete is the support for the automorphisms of free groups, as given by Gersten presentation:
|
||||
Relatively complete is the support for the automorphisms of free groups generated by transvections (or Nielsen generators):
|
||||
```julia
|
||||
julia> saut = SpecialAutomorphismGroup(F, maxrules=100)
|
||||
┌ Warning: Maximum number of rules (100) reached. The rewriting system may not be confluent.
|
||||
│ You may retry `knuthbendix` with a larger `maxrules` kwarg.
|
||||
└ @ KnuthBendix ~/.julia/packages/KnuthBendix/i93Np/src/kbs.jl:6
|
||||
julia> saut = SpecialAutomorphismGroup(F, max_rules=1000)
|
||||
automorphism group of free group on 3 generators
|
||||
|
||||
julia> S = gens(saut)
|
||||
12-element Vector{Automorphism{FreeGroup{Symbol},…}}:
|
||||
12-element Vector{Automorphism{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}}:
|
||||
ϱ₁.₂
|
||||
ϱ₁.₃
|
||||
ϱ₂.₁
|
||||
@ -114,17 +124,15 @@ julia> S = gens(saut)
|
||||
|
||||
julia> x, y, z = S[1], S[12], S[6];
|
||||
|
||||
julia> f = x*y*inv(z)
|
||||
ϱ₁.₂*λ₃.₂*ϱ₃.₂^-1
|
||||
julia> f = x*y*inv(z);
|
||||
|
||||
julia> g = inv(z)*y*x
|
||||
ϱ₃.₂^-1*ϱ₁.₂*λ₃.₂
|
||||
julia> g = inv(z)*y*x;
|
||||
|
||||
julia> word(f), word(g)
|
||||
(KnuthBendix.Word{UInt8}: 1·12·18, KnuthBendix.Word{UInt8}: 18·1·12)
|
||||
(1·23·12, 12·23·1)
|
||||
|
||||
```
|
||||
Even though Knuth-Bendix did not finish successfully in automorphism groups we have another ace in our sleeve to solve the word problem: evaluation.
|
||||
Even though there is no known finite, confluent rewriting system for automorphism groupsof the free group (so Knuth-Bendix did not finish successfully) we have another ace in our sleeve to solve the word problem: evaluation.
|
||||
Lets have a look at the images of generators under those automorphisms:
|
||||
```julia
|
||||
julia> evaluate(f) # or to be more verbose...
|
||||
|
@ -10,7 +10,7 @@ import OrderedCollections: OrderedSet
|
||||
|
||||
import KnuthBendix
|
||||
import KnuthBendix: AbstractWord, Alphabet, Word
|
||||
import KnuthBendix: alphabet
|
||||
import KnuthBendix: alphabet, ordering
|
||||
|
||||
export MatrixGroups
|
||||
|
||||
|
@ -6,7 +6,7 @@ function gersten_alphabet(n::Integer; commutative::Bool = true)
|
||||
append!(S, [λ(i, j) for (i, j) in indexing])
|
||||
end
|
||||
|
||||
return Alphabet(S)
|
||||
return Alphabet(mapreduce(x -> [x, inv(x)], union, S))
|
||||
end
|
||||
|
||||
function _commutation_rule(
|
||||
@ -46,7 +46,7 @@ gersten_relations(n::Integer; commutative) =
|
||||
function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:AbstractWord}
|
||||
@assert n > 1 "Gersten relations are defined only for n>1, got n=$n"
|
||||
A = gersten_alphabet(n, commutative=commutative)
|
||||
@assert length(A) <= KnuthBendix._max_alphabet_length(W) "Type $W can not represent words over alphabet with $(length(A)) letters."
|
||||
@assert length(A) <= typemax(eltype(W)) "Type $W can not represent words over alphabet with $(length(A)) letters."
|
||||
|
||||
rels = Pair{W,W}[]
|
||||
|
||||
@ -96,7 +96,7 @@ function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:Abstrac
|
||||
if i ≠ j
|
||||
push!(rels, _hexagonal_rule(W, A, ϱ(i, j), ϱ(j, i), λ(i, j), λ(j, i)))
|
||||
w = W([A[ϱ(i, j)], A[ϱ(j, i)^-1], A[λ(i, j)]])
|
||||
push!(rels, w^2 => inv(A, w)^2)
|
||||
push!(rels, w^2 => inv(w, A)^2)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -1,9 +1,9 @@
|
||||
struct SurfaceGroup{T, S, R} <: AbstractFPGroup
|
||||
struct SurfaceGroup{T,S,RW} <: AbstractFPGroup
|
||||
genus::Int
|
||||
boundaries::Int
|
||||
gens::Vector{T}
|
||||
relations::Vector{<:Pair{S,S}}
|
||||
rws::R
|
||||
rw::RW
|
||||
end
|
||||
|
||||
include("symplectic_twists.jl")
|
||||
@ -17,7 +17,7 @@ function Base.show(io::IO, S::SurfaceGroup)
|
||||
end
|
||||
end
|
||||
|
||||
function SurfaceGroup(genus::Integer, boundaries::Integer)
|
||||
function SurfaceGroup(genus::Integer, boundaries::Integer, W=Word{Int16})
|
||||
@assert genus > 1
|
||||
|
||||
# The (confluent) rewriting systems comes from
|
||||
@ -37,8 +37,8 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
|
||||
|
||||
for i in 1:genus
|
||||
subscript = join('₀' + d for d in reverse(digits(i)))
|
||||
KnuthBendix.set_inversion!(Al, "a" * subscript, "A" * subscript)
|
||||
KnuthBendix.set_inversion!(Al, "b" * subscript, "B" * subscript)
|
||||
KnuthBendix.setinverse!(Al, "a" * subscript, "A" * subscript)
|
||||
KnuthBendix.setinverse!(Al, "b" * subscript, "B" * subscript)
|
||||
end
|
||||
|
||||
if boundaries == 0
|
||||
@ -48,33 +48,34 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
|
||||
x = 4 * i
|
||||
append!(word, [x, x - 2, x - 1, x - 3])
|
||||
end
|
||||
comms = Word(word)
|
||||
comms = W(word)
|
||||
word_rels = [comms => one(comms)]
|
||||
|
||||
rws = KnuthBendix.RewritingSystem(word_rels, KnuthBendix.RecursivePathOrder(Al))
|
||||
KnuthBendix.knuthbendix!(rws)
|
||||
rws = let R = KnuthBendix.RewritingSystem(word_rels, KnuthBendix.Recursive(Al))
|
||||
KnuthBendix.IndexAutomaton(KnuthBendix.knuthbendix(R))
|
||||
end
|
||||
elseif boundaries == 1
|
||||
S = typeof(one(Word(Int[])))
|
||||
word_rels = Pair{S, S}[]
|
||||
rws = RewritingSystem(word_rels, KnuthBendix.LenLex(Al))
|
||||
word_rels = Pair{W,W}[]
|
||||
rws = let R = RewritingSystem(word_rels, KnuthBendix.LenLex(Al))
|
||||
KnuthBendix.IndexAutomaton(KnuthBendix.knuthbendix(R))
|
||||
end
|
||||
else
|
||||
throw("Not Implemented")
|
||||
throw("Not Implemented for MCG with $boundaryies boundary components")
|
||||
end
|
||||
|
||||
F = FreeGroup(alphabet(rws))
|
||||
F = FreeGroup(Al)
|
||||
rels = [F(lhs) => F(rhs) for (lhs, rhs) in word_rels]
|
||||
|
||||
return SurfaceGroup(genus, boundaries, KnuthBendix.letters(Al)[2:2:end], rels, rws)
|
||||
return SurfaceGroup(genus, boundaries, [Al[i] for i in 2:2:length(Al)], rels, rws)
|
||||
end
|
||||
|
||||
rewriting(S::SurfaceGroup) = S.rws
|
||||
KnuthBendix.alphabet(S::SurfaceGroup) = alphabet(rewriting(S))
|
||||
rewriting(S::SurfaceGroup) = S.rw
|
||||
relations(S::SurfaceGroup) = S.relations
|
||||
|
||||
function symplectic_twists(π₁Σ::SurfaceGroup)
|
||||
g = genus(π₁Σ)
|
||||
|
||||
saut = SpecialAutomorphismGroup(FreeGroup(2g), maxrules=100)
|
||||
saut = SpecialAutomorphismGroup(FreeGroup(2g), max_rules=1000)
|
||||
|
||||
Aij = [SymplecticMappingClass(saut, :A, i, j) for i in 1:g for j in 1:g if i ≠ j]
|
||||
|
||||
|
@ -5,19 +5,19 @@ function SpecialAutomorphismGroup(F::FreeGroup; ordering = KnuthBendix.LenLex, k
|
||||
|
||||
n = length(alphabet(F)) ÷ 2
|
||||
A, rels = gersten_relations(n, commutative=false)
|
||||
S = KnuthBendix.letters(A)[1:2(n^2-n)]
|
||||
S = [A[i] for i in 1:2:length(A)]
|
||||
|
||||
maxrules = 1000*n
|
||||
max_rules = 1000 * n
|
||||
|
||||
rws = Logging.with_logger(Logging.NullLogger()) do
|
||||
rws = KnuthBendix.RewritingSystem(rels, ordering(A))
|
||||
Logging.with_logger(Logging.NullLogger()) do
|
||||
# the rws is not confluent, let's suppress warning about it
|
||||
KnuthBendix.knuthbendix!(rws; maxrules=maxrules, kwargs...)
|
||||
end
|
||||
return AutomorphismGroup(F, S, rws, ntuple(i -> gens(F, i), n))
|
||||
KnuthBendix.knuthbendix(rws, KnuthBendix.Settings(; max_rules=max_rules, kwargs...))
|
||||
end
|
||||
|
||||
KnuthBendix.alphabet(G::AutomorphismGroup{<:FreeGroup}) = alphabet(rewriting(G))
|
||||
idxA = KnuthBendix.IndexAutomaton(rws)
|
||||
return AutomorphismGroup(F, S, idxA, ntuple(i -> gens(F, i), n))
|
||||
end
|
||||
|
||||
function relations(G::AutomorphismGroup{<:FreeGroup})
|
||||
n = length(alphabet(object(G))) ÷ 2
|
||||
|
@ -25,7 +25,7 @@ function Te_diagonal(λ::Groups.ΡΛ, ϱ::Groups.ΡΛ, i::Integer)
|
||||
|
||||
if i == n
|
||||
τ = rotation_element(λ, ϱ)
|
||||
return inv(A, τ) * Te_diagonal(λ, ϱ, 1) * τ
|
||||
return inv(τ, A) * Te_diagonal(λ, ϱ, 1) * τ
|
||||
end
|
||||
|
||||
@assert 1 <= i < n
|
||||
@ -37,32 +37,32 @@ function Te_diagonal(λ::Groups.ΡΛ, ϱ::Groups.ΡΛ, i::Integer)
|
||||
|
||||
g = one(Word(Int[]))
|
||||
g *= λ[NJ, NI] # β ↦ α*β
|
||||
g *= λ[NI, I] * inv(A, ϱ[NI, J]) # α ↦ a*α*b^-1
|
||||
g *= inv(A, λ[NJ, NI]) # β ↦ b*α^-1*a^-1*α*β
|
||||
g *= λ[J, NI] * inv(A, λ[J, I]) # b ↦ α
|
||||
g *= inv(A, λ[J, NI]) # b ↦ b*α^-1*a^-1*α
|
||||
g *= inv(A, ϱ[J, NI]) * ϱ[J, I] # b ↦ b*α^-1*a^-1*α*b*α^-1
|
||||
g *= λ[NI, I] * inv(ϱ[NI, J], A) # α ↦ a*α*b^-1
|
||||
g *= inv(λ[NJ, NI], A) # β ↦ b*α^-1*a^-1*α*β
|
||||
g *= λ[J, NI] * inv(λ[J, I], A) # b ↦ α
|
||||
g *= inv(λ[J, NI], A) # b ↦ b*α^-1*a^-1*α
|
||||
g *= inv(ϱ[J, NI], A) * ϱ[J, I] # b ↦ b*α^-1*a^-1*α*b*α^-1
|
||||
g *= ϱ[J, NI] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
|
||||
|
||||
return g
|
||||
end
|
||||
|
||||
function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
|
||||
a₀ = (a₁ * a₂ * a₃)^4 * inv(A, b₀)
|
||||
a₀ = (a₁ * a₂ * a₃)^4 * inv(b₀, A)
|
||||
X = a₄ * a₅ * a₃ * a₄ # from Primer
|
||||
b₁ = inv(A, X) * a₀ * X # from Primer
|
||||
b₁ = inv(X, A) * a₀ * X # from Primer
|
||||
Y = a₂ * a₃ * a₁ * a₂
|
||||
return inv(A, Y) * b₁ * Y # b₂ from Primer
|
||||
return inv(Y, A) * b₁ * Y # b₂ from Primer
|
||||
end
|
||||
|
||||
function Ta(λ::Groups.ΡΛ, i::Integer)
|
||||
@assert λ.id == :λ;
|
||||
@assert λ.id == :λ
|
||||
return λ[mod1(λ.N - 2i + 1, λ.N), mod1(λ.N - 2i + 2, λ.N)]
|
||||
end
|
||||
|
||||
function Tα(λ::Groups.ΡΛ, i::Integer)
|
||||
@assert λ.id == :λ;
|
||||
return inv(λ.A, λ[mod1(λ.N-2i+2, λ.N), mod1(λ.N-2i+1, λ.N)])
|
||||
@assert λ.id == :λ
|
||||
return inv(λ[mod1(λ.N - 2i + 2, λ.N), mod1(λ.N - 2i + 1, λ.N)], λ.A)
|
||||
end
|
||||
|
||||
function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
||||
@ -85,16 +85,16 @@ function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
||||
if mod(j - (i + 1), genus) == 0
|
||||
return Te_diagonal(λ, ϱ, i)
|
||||
else
|
||||
return inv(A, Te_lantern(
|
||||
return inv(Te_lantern(
|
||||
A,
|
||||
# Our notation: # Primer notation:
|
||||
inv(A, Ta(λ, i + 1)), # b₀
|
||||
inv(A, Ta(λ, i)), # a₁
|
||||
inv(A, Tα(λ, i)), # a₂
|
||||
inv(A, Te_diagonal(λ, ϱ, i)), # a₃
|
||||
inv(A, Tα(λ, i + 1)), # a₄
|
||||
inv(A, Te(λ, ϱ, i + 1, j)), # a₅
|
||||
))
|
||||
inv(Ta(λ, i + 1), A), # b₀
|
||||
inv(Ta(λ, i), A), # a₁
|
||||
inv(Tα(λ, i), A), # a₂
|
||||
inv(Te_diagonal(λ, ϱ, i), A), # a₃
|
||||
inv(Tα(λ, i + 1), A), # a₄
|
||||
inv(Te(λ, ϱ, i + 1, j), A), # a₅
|
||||
), A)
|
||||
end
|
||||
end
|
||||
|
||||
@ -123,24 +123,24 @@ function rotation_element(λ::ΡΛ, ϱ::ΡΛ)
|
||||
|
||||
halftwists = map(1:genus-1) do i
|
||||
j = i + 1
|
||||
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te_diagonal(λ, ϱ, i)
|
||||
δ = x * Tα(λ, i) * inv(A, x)
|
||||
x = Ta(λ, j) * inv(Ta(λ, i), A) * Tα(λ, j) * Te_diagonal(λ, ϱ, i)
|
||||
δ = x * Tα(λ, i) * inv(x, A)
|
||||
c =
|
||||
inv(A, Ta(λ, j)) *
|
||||
inv(Ta(λ, j), A) *
|
||||
Te(λ, ϱ, i, j) *
|
||||
Tα(λ, i)^2 *
|
||||
inv(A, δ) *
|
||||
inv(A, Ta(λ, j)) *
|
||||
inv(δ, A) *
|
||||
inv(Ta(λ, j), A) *
|
||||
Ta(λ, i) *
|
||||
δ
|
||||
z =
|
||||
Te_diagonal(λ, ϱ, i) *
|
||||
inv(A, Ta(λ, i)) *
|
||||
inv(Ta(λ, i), A) *
|
||||
Tα(λ, i) *
|
||||
Ta(λ, i) *
|
||||
inv(A, Te_diagonal(λ, ϱ, i))
|
||||
inv(Te_diagonal(λ, ϱ, i), A)
|
||||
|
||||
Ta(λ, i) * inv(A, Ta(λ, j) * Tα(λ, j))^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c
|
||||
Ta(λ, i) * inv(Ta(λ, j) * Tα(λ, j), A)^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c
|
||||
end
|
||||
|
||||
τ = (Ta(λ, 1) * Tα(λ, 1))^6 * prod(halftwists)
|
||||
@ -188,7 +188,7 @@ function SymplecticMappingClass(
|
||||
i::Integer,
|
||||
j::Integer;
|
||||
minus=false,
|
||||
inverse = false,
|
||||
inverse=false
|
||||
)
|
||||
@assert i > 0 && j > 0
|
||||
id === :A && @assert i ≠ j
|
||||
@ -201,24 +201,24 @@ function SymplecticMappingClass(
|
||||
|
||||
w = if id === :A
|
||||
Te(λ, ϱ, i, j) *
|
||||
inv(A, Ta(λ, i)) *
|
||||
inv(Ta(λ, i), A) *
|
||||
Tα(λ, i) *
|
||||
Ta(λ, i) *
|
||||
inv(A, Te(λ, ϱ, i, j)) *
|
||||
inv(A, Tα(λ, i)) *
|
||||
inv(A, Ta(λ, j))
|
||||
inv(Te(λ, ϱ, i, j), A) *
|
||||
inv(Tα(λ, i), A) *
|
||||
inv(Ta(λ, j), A)
|
||||
elseif id === :B
|
||||
if !minus
|
||||
if i ≠ j
|
||||
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j)
|
||||
δ = x * Tα(λ, i) * inv(A, x)
|
||||
Tα(λ, i) * Tα(λ, j) * inv(A, δ)
|
||||
x = Ta(λ, j) * inv(Ta(λ, i), A) * Tα(λ, j) * Te(λ, ϱ, i, j)
|
||||
δ = x * Tα(λ, i) * inv(x, A)
|
||||
Tα(λ, i) * Tα(λ, j) * inv(δ, A)
|
||||
else
|
||||
inv(A, Tα(λ, i))
|
||||
inv(Tα(λ, i), A)
|
||||
end
|
||||
else
|
||||
if i ≠ j
|
||||
Ta(λ, i) * Ta(λ, j) * inv(A, Te(λ, ϱ, i, j))
|
||||
Ta(λ, i) * Ta(λ, j) * inv(Te(λ, ϱ, i, j), A)
|
||||
else
|
||||
Ta(λ, i)
|
||||
end
|
||||
|
@ -45,9 +45,9 @@ Base.@propagate_inbounds @inline function evaluate!(
|
||||
if !t.inv
|
||||
append!(word(v[i]), word(v[j]))
|
||||
else
|
||||
# append!(word(v[i]), inv(A, word(v[j])))
|
||||
# append!(word(v[i]), inv(word(v[j]), A))
|
||||
for l in Iterators.reverse(word(v[j]))
|
||||
push!(word(v[i]), inv(A, l))
|
||||
push!(word(v[i]), inv(l, A))
|
||||
end
|
||||
end
|
||||
else # if t.id === :λ
|
||||
@ -57,9 +57,9 @@ Base.@propagate_inbounds @inline function evaluate!(
|
||||
pushfirst!(word(v[i]), l)
|
||||
end
|
||||
else
|
||||
# prepend!(word(v[i]), inv(A, word(v[j])))
|
||||
# prepend!(word(v[i]), inv(word(v[j]), A))
|
||||
for l in word(v[j])
|
||||
pushfirst!(word(v[i]), inv(A, l))
|
||||
pushfirst!(word(v[i]), inv(l, A))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
@ -4,15 +4,15 @@ function KnuthBendix.Alphabet(S::AbstractVector{<:GSymbol})
|
||||
return Alphabet(S, inversions)
|
||||
end
|
||||
|
||||
struct AutomorphismGroup{G<:Group,T,R,S} <: AbstractFPGroup
|
||||
struct AutomorphismGroup{G<:Group,T,RW,S} <: AbstractFPGroup
|
||||
group::G
|
||||
gens::Vector{T}
|
||||
rws::R
|
||||
rw::RW
|
||||
domain::S
|
||||
end
|
||||
|
||||
object(G::AutomorphismGroup) = G.group
|
||||
rewriting(G::AutomorphismGroup) = G.rws
|
||||
rewriting(G::AutomorphismGroup) = G.rw
|
||||
|
||||
function equality_data(f::AbstractFPGroupElement{<:AutomorphismGroup})
|
||||
imf = evaluate(f)
|
||||
@ -144,11 +144,11 @@ end
|
||||
|
||||
function Base.getindex(lm::LettersMap, i::Integer)
|
||||
# here i is an index of an alphabet
|
||||
@boundscheck 1 ≤ i ≤ length(KnuthBendix.letters(lm.A))
|
||||
@boundscheck 1 ≤ i ≤ length(lm.A)
|
||||
|
||||
if !haskey(lm.indices_map, i)
|
||||
img = if haskey(lm.indices_map, inv(lm.A, i))
|
||||
inv(lm.A, lm.indices_map[inv(lm.A, i)])
|
||||
img = if haskey(lm.indices_map, inv(i, lm.A))
|
||||
inv(lm.indices_map[inv(i, lm.A)], lm.A)
|
||||
else
|
||||
@warn "LetterMap: neither $i nor its inverse has assigned value"
|
||||
one(valtype(lm.indices_map))
|
||||
@ -193,7 +193,7 @@ function generated_evaluate(a::FPGroupElement{<:AutomorphismGroup})
|
||||
push!(args[idx].args, :(d[$k]))
|
||||
continue
|
||||
end
|
||||
k = findfirst(==(inv(A, l)), first_ltrs)
|
||||
k = findfirst(==(inv(l, A)), first_ltrs)
|
||||
if k !== nothing
|
||||
push!(args[idx].args, :(inv(d[$k])))
|
||||
continue
|
||||
@ -207,7 +207,8 @@ function generated_evaluate(a::FPGroupElement{<:AutomorphismGroup})
|
||||
@assert length(v.args) >= 2
|
||||
if length(v.args) > 2
|
||||
for (j, a) in pairs(v.args)
|
||||
if a isa Expr && a.head == :call "$a"
|
||||
if a isa Expr && a.head == :call
|
||||
"$a"
|
||||
@assert a.args[1] == :inv
|
||||
if !(a in keys(locals))
|
||||
locals[a] = Symbol("var_#$locals_counter")
|
||||
|
@ -88,7 +88,7 @@ struct Homomorphism{Gr1, Gr2, I, W}
|
||||
end
|
||||
end
|
||||
for (lhs, rhs) in relations(source)
|
||||
relator = lhs*inv(alphabet(source), rhs)
|
||||
relator = lhs * inv(rhs, alphabet(source))
|
||||
im_r = hom.target(hom(relator))
|
||||
@assert isone(im_r) "Map does not define a homomorphism: h($relator) = $(im_r) ≠ $(one(target))."
|
||||
end
|
||||
|
@ -5,7 +5,7 @@ struct SpecialLinearGroup{N, T, R, A, S} <: MatrixGroup{N,T}
|
||||
alphabet::A
|
||||
gens::S
|
||||
|
||||
function SpecialLinearGroup{N}(base_ring) where N
|
||||
function SpecialLinearGroup{N}(base_ring) where {N}
|
||||
S = [ElementaryMatrix{N}(i, j, one(base_ring)) for i in 1:N for j in 1:N if i ≠ j]
|
||||
alphabet = Alphabet(S)
|
||||
|
||||
@ -19,7 +19,7 @@ struct SpecialLinearGroup{N, T, R, A, S} <: MatrixGroup{N,T}
|
||||
end
|
||||
end
|
||||
|
||||
GroupsCore.ngens(SL::SpecialLinearGroup{N}) where N = N^2 - N
|
||||
GroupsCore.ngens(SL::SpecialLinearGroup{N}) where {N} = N^2 - N
|
||||
|
||||
Base.show(io::IO, SL::SpecialLinearGroup{N,T}) where {N,T} =
|
||||
print(io, "special linear group of $N×$N matrices over $T")
|
||||
@ -28,7 +28,7 @@ function Base.show(
|
||||
io::IO,
|
||||
::MIME"text/plain",
|
||||
sl::Groups.AbstractFPGroupElement{<:SpecialLinearGroup{N}}
|
||||
) where N
|
||||
) where {N}
|
||||
|
||||
Groups.normalform!(sl)
|
||||
|
||||
|
@ -5,7 +5,7 @@ struct SymplecticGroup{N, T, R, A, S} <: MatrixGroup{N,T}
|
||||
alphabet::A
|
||||
gens::S
|
||||
|
||||
function SymplecticGroup{N}(base_ring) where N
|
||||
function SymplecticGroup{N}(base_ring) where {N}
|
||||
S = symplectic_gens(N, eltype(base_ring))
|
||||
alphabet = Alphabet(S)
|
||||
|
||||
@ -21,7 +21,7 @@ end
|
||||
|
||||
GroupsCore.ngens(Sp::SymplecticGroup) = length(Sp.gens)
|
||||
|
||||
Base.show(io::IO, ::SymplecticGroup{N}) where N = print(io, "group of $N×$N symplectic matrices")
|
||||
Base.show(io::IO, ::SymplecticGroup{N}) where {N} = print(io, "group of $N×$N symplectic matrices")
|
||||
|
||||
function Base.show(
|
||||
io::IO,
|
||||
@ -65,6 +65,6 @@ function _std_symplectic_form(m::AbstractMatrix)
|
||||
return Ω
|
||||
end
|
||||
|
||||
function issymplectic(mat::M, Ω = _std_symplectic_form(mat)) where M <: AbstractMatrix
|
||||
function issymplectic(mat::M, Ω=_std_symplectic_form(mat)) where {M<:AbstractMatrix}
|
||||
return Ω == transpose(mat) * Ω * mat
|
||||
end
|
||||
|
@ -10,7 +10,7 @@ function Base.:(==)(m1::M1, m2::M2) where {M1<:MatrixGroupElement, M2<:MatrixGro
|
||||
return matrix_repr(m1) == matrix_repr(m2)
|
||||
end
|
||||
|
||||
Base.size(m::MatrixGroupElement{N}) where N = (N, N)
|
||||
Base.size(m::MatrixGroupElement{N}) where {N} = (N, N)
|
||||
Base.eltype(m::MatrixGroupElement{N,T}) where {N,T} = T
|
||||
|
||||
# three structural assumptions about matrix groups
|
||||
|
@ -2,7 +2,7 @@ struct ElementaryMatrix{N, T} <: Groups.GSymbol
|
||||
i::Int
|
||||
j::Int
|
||||
val::T
|
||||
ElementaryMatrix{N}(i, j, val=1) where N =
|
||||
ElementaryMatrix{N}(i, j, val=1) where {N} =
|
||||
(@assert i ≠ j; new{N,typeof(val)}(i, j, val))
|
||||
end
|
||||
|
||||
@ -11,13 +11,13 @@ function Base.show(io::IO, e::ElementaryMatrix)
|
||||
!isone(e.val) && print(io, "^$(e.val)")
|
||||
end
|
||||
|
||||
Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where N =
|
||||
Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where {N} =
|
||||
e.i == f.i && e.j == f.j && e.val == f.val
|
||||
|
||||
Base.hash(e::ElementaryMatrix, h::UInt) =
|
||||
hash(typeof(e), hash((e.i, e.j, e.val), h))
|
||||
|
||||
Base.inv(e::ElementaryMatrix{N}) where N =
|
||||
Base.inv(e::ElementaryMatrix{N}) where {N} =
|
||||
ElementaryMatrix{N}(e.i, e.j, -e.val)
|
||||
|
||||
function matrix_repr(e::ElementaryMatrix{N,T}) where {N,T}
|
||||
|
@ -3,7 +3,7 @@ struct ElementarySymplectic{N, T} <: Groups.GSymbol
|
||||
i::Int
|
||||
j::Int
|
||||
val::T
|
||||
function ElementarySymplectic{N}(s::Symbol, i::Integer, j::Integer, val=1) where N
|
||||
function ElementarySymplectic{N}(s::Symbol, i::Integer, j::Integer, val=1) where {N}
|
||||
@assert s ∈ (:A, :B)
|
||||
@assert iseven(N)
|
||||
n = N ÷ 2
|
||||
@ -22,9 +22,9 @@ function Base.show(io::IO, s::ElementarySymplectic)
|
||||
!isone(s.val) && print(io, "^$(s.val)")
|
||||
end
|
||||
|
||||
_ind(s::ElementarySymplectic{N}) where N = (s.i, s.j)
|
||||
_ind(s::ElementarySymplectic{N}) where {N} = (s.i, s.j)
|
||||
_local_ind(N_half::Integer, i::Integer) = ifelse(i <= N_half, i, i - N_half)
|
||||
function _dual_ind(s::ElementarySymplectic{N}) where N
|
||||
function _dual_ind(s::ElementarySymplectic{N}) where {N}
|
||||
if s.symbol === :A && return _ind(s)
|
||||
else#if s.symbol === :B
|
||||
return _dual_ind(N ÷ 2, s.i, s.j)
|
||||
@ -51,10 +51,10 @@ end
|
||||
Base.hash(s::ElementarySymplectic, h::UInt) =
|
||||
hash(Set([_ind(s); _dual_ind(s)]), hash(s.symbol, hash(s.val, h)))
|
||||
|
||||
LinearAlgebra.transpose(s::ElementarySymplectic{N}) where N =
|
||||
LinearAlgebra.transpose(s::ElementarySymplectic{N}) where {N} =
|
||||
ElementarySymplectic{N}(s.symbol, s.j, s.i, s.val)
|
||||
|
||||
Base.inv(s::ElementarySymplectic{N}) where N =
|
||||
Base.inv(s::ElementarySymplectic{N}) where {N} =
|
||||
ElementarySymplectic{N}(s.symbol, s.i, s.j, -s.val)
|
||||
|
||||
function matrix_repr(s::ElementarySymplectic{N,T}) where {N,T}
|
||||
|
@ -42,5 +42,5 @@ Defaults to the rewriting in the free group.
|
||||
"""
|
||||
@inline function normalform!(res::AbstractWord, g::AbstractFPGroupElement)
|
||||
isone(res) && isnormalform(g) && return append!(res, word(g))
|
||||
return KnuthBendix.rewrite_from_left!(res, word(g), rewriting(parent(g)))
|
||||
return KnuthBendix.rewrite!(res, word(g), rewriting(parent(g)))
|
||||
end
|
||||
|
67
src/types.jl
67
src/types.jl
@ -3,15 +3,18 @@
|
||||
"""
|
||||
AbstractFPGroup
|
||||
|
||||
An Abstract type representing finitely presented groups. Every instance `` must implement
|
||||
An Abstract type representing finitely presented groups. Every instance must implement
|
||||
* `KnuthBendix.alphabet(G::MyFPGroup)`
|
||||
* `rewriting(G::MyFPGroup)` : return the rewriting object which must implement
|
||||
> `KnuthBendix.rewrite_from_left!(u, v, rewriting(G))`.
|
||||
By default `alphabet(G)` is returned, which amounts to free rewriting in `G`.
|
||||
> `KnuthBendix.rewrite!(u, v, rewriting(G))`.
|
||||
E.g. for `G::FreeGroup` `alphabet(G)` is returned, which amounts to free rewriting.
|
||||
* `ordering(G::MyFPGroup)[ = KnuthBendix.ordering(rewriting(G))]` : return the
|
||||
(implicit) ordering for the alphabet of `G`.
|
||||
* `relations(G::MyFPGroup)` : return a set of defining relations.
|
||||
|
||||
AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt16}`,
|
||||
which controls the word type used for group elements. If a group has more than `255` generators you need to define e.g.
|
||||
AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt8}`,
|
||||
which controls the word type used for group elements.
|
||||
If a group has more than `255` generators you need to define e.g.
|
||||
> `word_type(::Type{MyFPGroup}) = Word{UInt16}`
|
||||
"""
|
||||
abstract type AbstractFPGroup <: GroupsCore.Group end
|
||||
@ -22,22 +25,25 @@ word_type(::Type{<:AbstractFPGroup}) = Word{UInt8}
|
||||
|
||||
"""
|
||||
rewriting(G::AbstractFPGroup)
|
||||
Return a "rewriting object" for elements of `G`. The rewriting object must must implement
|
||||
KnuthBendix.rewrite_from_left!(
|
||||
u::AbstractWord,
|
||||
v::AbstractWord,
|
||||
rewriting(G)
|
||||
)
|
||||
Return a "rewriting object" for elements of `G`.
|
||||
|
||||
For example if `G` is a `FreeGroup` then `alphabet(G)` is returned which results in free rewriting. For `FPGroup` a rewriting system is returned which may (or may not) rewrite word `v` to its normal form.
|
||||
The rewriting object must must implement
|
||||
KnuthBendix.rewrite!(u::AbstractWord, v::AbstractWord, rewriting(G))
|
||||
|
||||
For example if `G` is a `FreeGroup` then `alphabet(G)` is returned which results
|
||||
in free rewriting. For `FPGroup` a rewriting system is returned which may
|
||||
(or may not) rewrite word `v` to its normal form (depending on e.g. its confluence).
|
||||
"""
|
||||
function rewriting end
|
||||
|
||||
KnuthBendix.ordering(G::AbstractFPGroup) = ordering(rewriting(G))
|
||||
KnuthBendix.alphabet(G::AbstractFPGroup) = alphabet(ordering(G))
|
||||
|
||||
Base.@propagate_inbounds function (G::AbstractFPGroup)(
|
||||
word::AbstractVector{<:Integer},
|
||||
)
|
||||
@boundscheck @assert all(
|
||||
l -> 1 <= l <= length(KnuthBendix.alphabet(G)),
|
||||
l -> 1 <= l <= length(alphabet(G)),
|
||||
word,
|
||||
)
|
||||
return FPGroupElement(word_type(G)(word), G)
|
||||
@ -128,7 +134,7 @@ end
|
||||
|
||||
function Base.inv(g::GEl) where {GEl<:AbstractFPGroupElement}
|
||||
G = parent(g)
|
||||
return GEl(inv(alphabet(G), word(g)), G)
|
||||
return GEl(inv(word(g), alphabet(G)), G)
|
||||
end
|
||||
|
||||
function Base.:(*)(g::GEl, h::GEl) where {GEl<:AbstractFPGroupElement}
|
||||
@ -153,8 +159,7 @@ struct FreeGroup{T,O} <: AbstractFPGroup
|
||||
|
||||
function FreeGroup(gens, ordering::KnuthBendix.WordOrdering)
|
||||
@assert length(gens) == length(unique(gens))
|
||||
L = KnuthBendix.letters(alphabet(ordering))
|
||||
@assert all(l -> l in L, gens)
|
||||
@assert all(l -> l in alphabet(ordering), gens)
|
||||
return new{eltype(gens),typeof(ordering)}(gens, ordering)
|
||||
end
|
||||
end
|
||||
@ -163,15 +168,14 @@ FreeGroup(gens, A::Alphabet) = FreeGroup(gens, KnuthBendix.LenLex(A))
|
||||
|
||||
function FreeGroup(A::Alphabet)
|
||||
@boundscheck @assert all(
|
||||
KnuthBendix.hasinverse(l, A) for l in KnuthBendix.letters(A)
|
||||
KnuthBendix.hasinverse(l, A) for l in A
|
||||
)
|
||||
ltrs = KnuthBendix.letters(A)
|
||||
gens = Vector{eltype(ltrs)}()
|
||||
invs = Vector{eltype(ltrs)}()
|
||||
for l in ltrs
|
||||
gens = Vector{eltype(A)}()
|
||||
invs = Vector{eltype(A)}()
|
||||
for l in A
|
||||
l ∈ invs && continue
|
||||
push!(gens, l)
|
||||
push!(invs, inv(A, l))
|
||||
push!(invs, inv(l, A))
|
||||
end
|
||||
|
||||
return FreeGroup(gens, A)
|
||||
@ -193,10 +197,9 @@ Base.show(io::IO, F::FreeGroup) =
|
||||
print(io, "free group on $(ngens(F)) generators")
|
||||
|
||||
# mandatory methods:
|
||||
relations(F::FreeGroup) = Pair{eltype(F)}[]
|
||||
KnuthBendix.ordering(F::FreeGroup) = F.ordering
|
||||
KnuthBendix.alphabet(F::FreeGroup) = alphabet(KnuthBendix.ordering(F))
|
||||
rewriting(F::FreeGroup) = alphabet(F)
|
||||
rewriting(F::FreeGroup) = alphabet(F) # alphabet(F) = alphabet(ordering(F))
|
||||
relations(F::FreeGroup) = Pair{eltype(F),eltype(F)}[]
|
||||
|
||||
# GroupsCore interface:
|
||||
# these are mathematically correct
|
||||
@ -207,22 +210,20 @@ GroupsCore.isfiniteorder(g::AbstractFPGroupElement{<:FreeGroup}) =
|
||||
|
||||
## FP Groups
|
||||
|
||||
struct FPGroup{T,R,S} <: AbstractFPGroup
|
||||
struct FPGroup{T,RW,S} <: AbstractFPGroup
|
||||
gens::Vector{T}
|
||||
relations::Vector{Pair{S,S}}
|
||||
rws::R
|
||||
rw::RW
|
||||
end
|
||||
|
||||
relations(G::FPGroup) = G.relations
|
||||
rewriting(G::FPGroup) = G.rws
|
||||
KnuthBendix.ordering(G::FPGroup) = KnuthBendix.ordering(rewriting(G))
|
||||
KnuthBendix.alphabet(G::FPGroup) = alphabet(KnuthBendix.ordering(G))
|
||||
rewriting(G::FPGroup) = G.rw
|
||||
|
||||
function FPGroup(
|
||||
G::AbstractFPGroup,
|
||||
rels::AbstractVector{<:Pair{GEl,GEl}};
|
||||
ordering=KnuthBendix.ordering(G),
|
||||
kwargs...,
|
||||
kwargs...
|
||||
) where {GEl<:FPGroupElement}
|
||||
for (lhs, rhs) in rels
|
||||
@assert parent(lhs) === parent(rhs) === G
|
||||
@ -230,9 +231,9 @@ function FPGroup(
|
||||
word_rels = [word(lhs) => word(rhs) for (lhs, rhs) in [relations(G); rels]]
|
||||
rws = KnuthBendix.RewritingSystem(word_rels, ordering)
|
||||
|
||||
KnuthBendix.knuthbendix!(rws; kwargs...)
|
||||
rws = KnuthBendix.knuthbendix(rws, KnuthBendix.Settings(; kwargs...))
|
||||
|
||||
return FPGroup(G.gens, rels, rws)
|
||||
return FPGroup(G.gens, rels, KnuthBendix.IndexAutomaton(rws))
|
||||
end
|
||||
|
||||
function Base.show(io::IO, ::MIME"text/plain", G::FPGroup)
|
||||
|
@ -1,11 +1,22 @@
|
||||
"""
|
||||
wlmetric_ball(S::AbstractVector{<:GroupElem}
|
||||
[, center=one(first(S)); radius=2, op=*])
|
||||
[, center=one(first(S)); radius=2, op=*, threading=true])
|
||||
Compute metric ball as a list of elements of non-decreasing length, given the
|
||||
word-length metric on the group generated by `S`. The ball is centered at `center`
|
||||
(by default: the identity element). `radius` and `op` keywords specify the
|
||||
radius and multiplication operation to be used.
|
||||
"""
|
||||
function wlmetric_ball(
|
||||
S::AbstractVector{T},
|
||||
center::T=one(first(S));
|
||||
radius=2,
|
||||
op=*,
|
||||
threading=true
|
||||
) where {T}
|
||||
threading && return wlmetric_ball_thr(S, center, radius=radius, op=op)
|
||||
return wlmetric_ball_serial(S, center, radius=radius, op=op)
|
||||
end
|
||||
|
||||
function wlmetric_ball_serial(S::AbstractVector{T}, center::T=one(first(S)); radius=2, op=*) where {T}
|
||||
@assert radius >= 1
|
||||
old = union!([center], [center * s for s in S])
|
||||
@ -26,6 +37,7 @@ function _wlmetric_ball(S, old, radius, op, collect, unique)
|
||||
(g = op(o, s); hash(g); g)
|
||||
for o in @view(old[sizes[end-1]:end]) for s in S
|
||||
)
|
||||
|
||||
append!(old, new)
|
||||
unique(old)
|
||||
end
|
||||
@ -34,13 +46,3 @@ function _wlmetric_ball(S, old, radius, op, collect, unique)
|
||||
return old, sizes[2:end]
|
||||
end
|
||||
|
||||
function wlmetric_ball(
|
||||
S::AbstractVector{T},
|
||||
center::T = one(first(S));
|
||||
radius = 2,
|
||||
op = *,
|
||||
threading = true,
|
||||
) where {T}
|
||||
threading && return wlmetric_ball_thr(S, center, radius = radius, op = op)
|
||||
return wlmetric_ball_serial(S, center, radius = radius, op = op)
|
||||
end
|
||||
|
@ -79,7 +79,7 @@
|
||||
@test inv(l)(deepcopy(D)) == (a, d^-1 * b, c, d)
|
||||
end
|
||||
|
||||
A = SpecialAutomorphismGroup(F4, maxrules=1000)
|
||||
A = SpecialAutomorphismGroup(F4, max_rules=1000)
|
||||
|
||||
@testset "AutomorphismGroup constructors" begin
|
||||
@test A isa Groups.AbstractFPGroup
|
||||
@ -91,12 +91,12 @@
|
||||
|
||||
@testset "Automorphisms: hash and evaluate" begin
|
||||
@test Groups.domain(gens(A, 1)) == D
|
||||
g, h = gens(A, 1), gens(A, 8)
|
||||
g, h = gens(A, 1), gens(A, 8) # (ϱ₁.₂, ϱ₃.₂)
|
||||
|
||||
@test evaluate(g * h) == evaluate(h * g)
|
||||
@test (g * h).savedhash == zero(UInt)
|
||||
|
||||
@test sprint(show, typeof(g)) == "Automorphism{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}"
|
||||
@test contains(sprint(show, typeof(g)), "Automorphism{FreeGroup{Symbol")
|
||||
|
||||
a = g * h
|
||||
b = h * g
|
||||
|
@ -3,16 +3,18 @@
|
||||
|
||||
π₁Σ = Groups.SurfaceGroup(genus, 0)
|
||||
|
||||
@test contains(sprint(print, π₁Σ), "surface")
|
||||
|
||||
Groups.PermRightAut(p::Perm) = Groups.PermRightAut(p.d)
|
||||
# Groups.PermLeftAut(p::Perm) = Groups.PermLeftAut(p.d)
|
||||
autπ₁Σ = let autπ₁Σ = AutomorphismGroup(π₁Σ)
|
||||
pauts = let p = perm"(1,3,5)(2,4,6)"
|
||||
[Groups.PermRightAut(p^i) for i in 0:2]
|
||||
end
|
||||
T = eltype(KnuthBendix.letters(alphabet(autπ₁Σ)))
|
||||
T = eltype(alphabet(autπ₁Σ))
|
||||
S = eltype(pauts)
|
||||
|
||||
A = Alphabet(Union{T,S}[KnuthBendix.letters(alphabet(autπ₁Σ)); pauts])
|
||||
A = Alphabet(Union{T,S}[alphabet(autπ₁Σ)...; pauts])
|
||||
|
||||
autG = AutomorphismGroup(
|
||||
π₁Σ,
|
||||
@ -27,9 +29,7 @@
|
||||
Al = alphabet(autπ₁Σ)
|
||||
S = [gens(autπ₁Σ); inv.(gens(autπ₁Σ))]
|
||||
|
||||
sautFn = let ltrs = KnuthBendix.letters(Al)
|
||||
parent(first(ltrs).autFn_word)
|
||||
end
|
||||
sautFn = parent(Al[1].autFn_word)
|
||||
|
||||
τ = Groups.rotation_element(sautFn)
|
||||
|
||||
|
@ -40,7 +40,7 @@
|
||||
end
|
||||
|
||||
# quotient of G
|
||||
H = FPGroup(G, [aG^2=>cG, bG*cG=>aG], maxrules=200)
|
||||
H = FPGroup(G, [aG^2 => cG, bG * cG => aG], max_rules=200)
|
||||
|
||||
h = H(word(g))
|
||||
|
||||
@ -48,7 +48,7 @@
|
||||
@test_throws AssertionError h == g
|
||||
@test_throws MethodError h * g
|
||||
|
||||
H′ = FPGroup(G, [aG^2=>cG, bG*cG=>aG], maxrules=200)
|
||||
H′ = FPGroup(G, [aG^2 => cG, bG * cG => aG], max_rules=200)
|
||||
@test_throws AssertionError one(H) == one(H′)
|
||||
|
||||
Groups.normalform!(h)
|
||||
|
@ -4,9 +4,10 @@ using Groups.MatrixGroups
|
||||
@testset "SL(n, ℤ)" begin
|
||||
SL3Z = SpecialLinearGroup{3}(Int8)
|
||||
|
||||
S = gens(SL3Z); union!(S, inv.(S))
|
||||
S = gens(SL3Z)
|
||||
union!(S, inv.(S))
|
||||
|
||||
E, sizes = Groups.wlmetric_ball(S, radius=4)
|
||||
_, sizes = Groups.wlmetric_ball(S, radius=4)
|
||||
|
||||
@test sizes == [13, 121, 883, 5455]
|
||||
|
||||
@ -17,10 +18,11 @@ using Groups.MatrixGroups
|
||||
r = E(2, 3)^-3
|
||||
s = E(1, 3)^2 * E(3, 2)^-1
|
||||
|
||||
S = [w,r,s]; S = unique([S; inv.(S)]);
|
||||
_, sizes = Groups.wlmetric_ball(S, radius=4);
|
||||
S = [w, r, s]
|
||||
S = unique([S; inv.(S)])
|
||||
_, sizes = Groups.wlmetric_ball(S, radius=4)
|
||||
@test sizes == [7, 33, 141, 561]
|
||||
_, sizes = Groups.wlmetric_ball_serial(S, radius=4);
|
||||
_, sizes = Groups.wlmetric_ball_serial(S, radius=4)
|
||||
@test sizes == [7, 33, 141, 561]
|
||||
|
||||
Logging.with_logger(Logging.NullLogger()) do
|
||||
@ -50,6 +52,7 @@ using Groups.MatrixGroups
|
||||
@testset "Sp(6, ℤ)" begin
|
||||
Sp6 = MatrixGroups.SymplecticGroup{6}(Int8)
|
||||
|
||||
Logging.with_logger(Logging.NullLogger()) do
|
||||
@testset "GroupsCore conformance" begin
|
||||
test_Group_interface(Sp6)
|
||||
g = Sp6(rand(1:length(alphabet(Sp6)), 10))
|
||||
@ -57,6 +60,7 @@ using Groups.MatrixGroups
|
||||
|
||||
test_GroupElement_interface(g, h)
|
||||
end
|
||||
end
|
||||
|
||||
@test contains(sprint(print, Sp6), "group of 6×6 symplectic matrices")
|
||||
|
||||
|
@ -24,7 +24,7 @@ include(joinpath(pathof(GroupsCore), "..", "..", "test", "conformance_test.jl"))
|
||||
_, t = @timed include("homomorphisms.jl")
|
||||
@info "homomorphisms.jl took $(round(t, digits=2))s"
|
||||
|
||||
if haskey(ENV, "CI")
|
||||
if !haskey(ENV, "CI")
|
||||
_, t = @timed include("AutSigma_41.jl")
|
||||
@info "AutSigma_41 took $(round(t, digits=2))s"
|
||||
_, t = @timed include("AutSigma3.jl")
|
||||
|
Loading…
Reference in New Issue
Block a user