1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-06 21:00:29 +01:00

fix indentation

This commit is contained in:
kalmarek 2018-07-30 14:05:47 +02:00
parent 0ab4df2ce5
commit 1783ba5065

View File

@ -82,7 +82,7 @@ elements(G::MltGrp{F}) where F <: AbstractAlgebra.GFField = (G(i*G.obj(1)) for i
###############################################################################
doc"""
DirectProductGroup(G::Group, n::Int) <: Group
DirectProductGroup(G::Group, n::Int) <: Group
Implements `n`-fold direct product of `G`. The group operation is
`*` distributed component-wise, with component-wise identity as neutral element.
"""
@ -197,11 +197,11 @@ end
###############################################################################
function show(io::IO, G::DirectProductGroup)
println(io, "$(G.n)-fold direct product of $(G.group)")
print(io, "$(G.n)-fold direct product of $(G.group)")
end
function show(io::IO, g::DirectProductGroupElem)
print(io, "($(join(g.elts,",")))")
print(io, "[$(join(g.elts,","))]")
end
###############################################################################
@ -215,9 +215,9 @@ doc"""
> Checks if two direct product groups are the same.
"""
function (==)(G::DirectProductGroup, H::DirectProductGroup)
G.group == H.group || return false
G.n == G.n || return false
return true
G.group == H.group || return false
G.n == G.n || return false
return true
end
doc"""
@ -225,8 +225,8 @@ doc"""
> Checks if two direct product group elements are the same.
"""
function (==)(g::DirectProductGroupElem, h::DirectProductGroupElem)
g.elts == h.elts || return false
return true
g.elts == h.elts || return false
return true
end
###############################################################################
@ -269,9 +269,9 @@ doc"""
# TODO: can Base.product handle generators?
# now it returns nothing's so we have to collect ellements...
function elements(G::DirectProductGroup)
elts = collect(elements(G.group))
cartesian_prod = Base.product([elts for _ in 1:G.n]...)
return (DirectProductGroupElem([elt...]) for elt in cartesian_prod)
elts = collect(elements(G.group))
cartesian_prod = Base.product([elts for _ in 1:G.n]...)
return (DirectProductGroupElem([elt...]) for elt in cartesian_prod)
end
doc"""