mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-04 04:20:29 +01:00
update to PermutationGroups-0.4
This commit is contained in:
parent
d385992e92
commit
1a51a87771
@ -17,7 +17,7 @@ StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
|
||||
GroupsCore = "0.4"
|
||||
KnuthBendix = "0.4"
|
||||
OrderedCollections = "1"
|
||||
PermutationGroups = "0.3"
|
||||
PermutationGroups = "0.4"
|
||||
StaticArrays = "1"
|
||||
julia = "1.6"
|
||||
|
||||
|
@ -1,5 +1,7 @@
|
||||
import PermutationGroups:
|
||||
AbstractPermutationGroup, AbstractPerm, degree, SymmetricGroup
|
||||
AbstractPermutationGroup,
|
||||
AbstractPermutation,
|
||||
degree
|
||||
|
||||
"""
|
||||
WreathProduct(G::Group, P::AbstractPermutationGroup) <: Group
|
||||
@ -27,7 +29,7 @@ end
|
||||
|
||||
struct WreathProductElement{
|
||||
DPEl<:DirectPowerElement,
|
||||
PEl<:AbstractPerm,
|
||||
PEl<:AbstractPermutation,
|
||||
Wr<:WreathProduct,
|
||||
} <: GroupsCore.GroupElement
|
||||
n::DPEl
|
||||
@ -36,7 +38,7 @@ struct WreathProductElement{
|
||||
|
||||
function WreathProductElement(
|
||||
n::DirectPowerElement,
|
||||
p::AbstractPerm,
|
||||
p::AbstractPermutation,
|
||||
W::WreathProduct,
|
||||
)
|
||||
return new{typeof(n),typeof(p),typeof(W)}(n, p, W)
|
||||
@ -53,16 +55,19 @@ function Base.iterate(G::WreathProduct)
|
||||
itr = Iterators.product(G.N, G.P)
|
||||
res = iterate(itr)
|
||||
@assert res !== nothing
|
||||
elt = WreathProductElement(first(res)..., G)
|
||||
return elt, (iterator = itr, state = last(res))
|
||||
ab, st = res
|
||||
(a, b) = ab
|
||||
elt = WreathProductElement(a, b, G)
|
||||
return elt, (itr, st)
|
||||
end
|
||||
|
||||
function Base.iterate(G::WreathProduct, state)
|
||||
itr, st = state.iterator, state.state
|
||||
itr, st = state
|
||||
res = iterate(itr, st)
|
||||
res === nothing && return nothing
|
||||
elt = WreathProductElement(first(res)..., G)
|
||||
return elt, (iterator = itr, state = last(res))
|
||||
(a::eltype(G.N), b::eltype(G.P)), st = res
|
||||
elt = WreathProductElement(a, b, G)
|
||||
return elt, (itr, st)
|
||||
end
|
||||
|
||||
function Base.IteratorSize(::Type{<:WreathProduct{DP,PGr}}) where {DP,PGr}
|
||||
@ -118,8 +123,11 @@ function Base.deepcopy_internal(g::WreathProductElement, stackdict::IdDict)
|
||||
)
|
||||
end
|
||||
|
||||
function _act(p::AbstractPerm, n::DirectPowerElement)
|
||||
return DirectPowerElement(n.elts^p, parent(n))
|
||||
function _act(p::AbstractPermutation, n::DirectPowerElement)
|
||||
return DirectPowerElement(
|
||||
ntuple(i -> n.elts[i^p], length(n.elts)),
|
||||
parent(n),
|
||||
)
|
||||
end
|
||||
|
||||
function Base.inv(g::WreathProductElement)
|
||||
|
@ -5,7 +5,7 @@
|
||||
|
||||
@test contains(sprint(print, π₁Σ), "surface")
|
||||
|
||||
Groups.PermRightAut(p::Perm) = Groups.PermRightAut(p.d)
|
||||
Groups.PermRightAut(p::Perm) = Groups.PermRightAut([i^p for i in 1:2genus])
|
||||
# Groups.PermLeftAut(p::Perm) = Groups.PermLeftAut(p.d)
|
||||
autπ₁Σ = let autπ₁Σ = AutomorphismGroup(π₁Σ)
|
||||
pauts = let p = perm"(1,3,5)(2,4,6)"
|
||||
@ -50,8 +50,9 @@
|
||||
@test π₁Σ.(word.(z)) == Groups.domain(first(S))
|
||||
d = Groups.domain(first(S))
|
||||
p = perm"(1,3,5)(2,4,6)"
|
||||
@test Groups.evaluate!(deepcopy(d), τ) == d^inv(p)
|
||||
@test Groups.evaluate!(deepcopy(d), τ^2) == d^p
|
||||
@test Groups.evaluate!(deepcopy(d), τ) ==
|
||||
ntuple(i -> d[i^inv(p)], length(d))
|
||||
@test Groups.evaluate!(deepcopy(d), τ^2) == ntuple(i -> d[i^p], length(d))
|
||||
|
||||
E, sizes = Groups.wlmetric_ball(S, radius=3)
|
||||
@test sizes == [49, 1813, 62971]
|
||||
|
@ -1,9 +1,10 @@
|
||||
@testset "GroupConstructions" begin
|
||||
|
||||
symmetric_group(n) = PermGroup(perm"(1,2)", Perm([2:n; 1]))
|
||||
|
||||
@testset "DirectProduct" begin
|
||||
GH =
|
||||
let G = PermutationGroups.SymmetricGroup(3),
|
||||
H = PermutationGroups.SymmetricGroup(4)
|
||||
let G = symmetric_group(3), H = symmetric_group(4)
|
||||
|
||||
Groups.Constructions.DirectProduct(G, H)
|
||||
end
|
||||
@ -17,7 +18,7 @@
|
||||
|
||||
@testset "DirectPower" begin
|
||||
GGG = Groups.Constructions.DirectPower{3}(
|
||||
PermutationGroups.SymmetricGroup(3),
|
||||
symmetric_group(3),
|
||||
)
|
||||
test_Group_interface(GGG)
|
||||
test_GroupElement_interface(rand(GGG, 2)...)
|
||||
@ -28,8 +29,7 @@
|
||||
end
|
||||
@testset "WreathProduct" begin
|
||||
W =
|
||||
let G = PermutationGroups.SymmetricGroup(2),
|
||||
P = PermutationGroups.SymmetricGroup(4)
|
||||
let G = symmetric_group(2), P = symmetric_group(4)
|
||||
|
||||
Groups.Constructions.WreathProduct(G, P)
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user