mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-19 14:35:28 +01:00
first working version of new AutomoprhismGroups
This commit is contained in:
parent
31a0620da3
commit
217be597c3
@ -5,6 +5,7 @@ using LinearAlgebra
|
||||
using ThreadsX
|
||||
|
||||
import AbstractAlgebra
|
||||
import KnuthBendix
|
||||
|
||||
export gens, FreeGroup, Aut, SAut
|
||||
|
||||
@ -22,12 +23,16 @@ include("arithmetic.jl")
|
||||
include("findreplace.jl")
|
||||
|
||||
module New
|
||||
import Groups: AutSymbol, GSymbol, λ, ϱ, RTransvect, LTransvect
|
||||
using DataStructures
|
||||
|
||||
include("new_types.jl")
|
||||
include("new_hashing.jl")
|
||||
include("normalform.jl")
|
||||
|
||||
include("gersten_relations.jl")
|
||||
include("new_autgroups.jl")
|
||||
|
||||
end # module New
|
||||
|
||||
###############################################################################
|
||||
|
108
src/gersten_relations.jl
Normal file
108
src/gersten_relations.jl
Normal file
@ -0,0 +1,108 @@
|
||||
function gersten_alphabet(n::Integer; commutative::Bool = true)
|
||||
indexing = [[i, j] for i in 1:n for j in 1:n if i ≠ j]
|
||||
rmuls = [ϱ(i, j) for (i, j) in indexing]
|
||||
|
||||
S = if commutative
|
||||
Vector{AutSymbol}(rmuls)
|
||||
else
|
||||
lmuls = [λ(i, j) for (i, j) in indexing]
|
||||
AutSymbol[rmuls; lmuls]
|
||||
end
|
||||
|
||||
return Alphabet(S)
|
||||
end
|
||||
|
||||
function _commutation_rule(
|
||||
::Type{W},
|
||||
A::Alphabet,
|
||||
x::S,
|
||||
y::S,
|
||||
) where {S,T,W<:AbstractWord{T}}
|
||||
return W(T[A[x], A[y]]) => W(T[A[y], A[x]])
|
||||
end
|
||||
|
||||
function _pentagonal_rule(
|
||||
::Type{W},
|
||||
A::Alphabet,
|
||||
x::S,
|
||||
y::S,
|
||||
z::S,
|
||||
) where {S,T,W<:AbstractWord{T}}
|
||||
# x·y·x⁻¹·y⁻¹ => z, i.e. z·y·x => x·y
|
||||
return W(T[A[z], A[y], A[x]]) => W(T[A[x], A[y]])
|
||||
end
|
||||
function _hexagonal_rule(
|
||||
::Type{W},
|
||||
A::Alphabet,
|
||||
x::S,
|
||||
y::S,
|
||||
z::S,
|
||||
w::S,
|
||||
) where {S,T,W<:AbstractWord{T}}
|
||||
# x·y⁻¹·z => z·w⁻¹·x
|
||||
return W(T[A[x], A[inv(y)], A[z]]) => W(T[A[z], A[w^-1], A[x]])
|
||||
end
|
||||
|
||||
gersten_relations(n::Integer; commutative) =
|
||||
gersten_relations(Word{UInt8}, n, commutative = commutative)
|
||||
|
||||
function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:AbstractWord}
|
||||
@assert n > 1 "Gersten relations are defined only for n>1, got n=$n"
|
||||
A = gersten_alphabet(n, commutative = commutative)
|
||||
@assert length(A) <= KnuthBendix._max_alphabet_length(W) "Type $W can not represent words over alphabet with $(length(A)) letters."
|
||||
|
||||
rels = Pair{W,W}[]
|
||||
|
||||
for (i, j, k, l) in Iterators.product(1:n, 1:n, 1:n, 1:n)
|
||||
if i ≠ j && k ≠ l && k ≠ i && k ≠ j && l ≠ i
|
||||
push!(rels, _commutation_rule(W, A, ϱ(i, j), ϱ(k, l)))
|
||||
|
||||
commutative && continue
|
||||
|
||||
push!(rels, _commutation_rule(W, A, λ(i, j), λ(k, l)))
|
||||
end
|
||||
end
|
||||
|
||||
if !commutative
|
||||
for (i, j, k, l) in Iterators.product(1:n, 1:n, 1:n, 1:n)
|
||||
if (i ≠ j && k ≠ l && k ≠ j && l ≠ i)
|
||||
push!(rels, _commutation_rule(W, A, ϱ(i, j), λ(k, l)))
|
||||
push!(rels, _commutation_rule(W, A, λ(i, j), ϱ(k, l)))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
# pentagonal rule:
|
||||
# x*y*inv(x)*inv(y)=>z
|
||||
|
||||
for (i, j, k) in Iterators.product(1:n, 1:n, 1:n)
|
||||
if (i ≠ j && k ≠ i && k ≠ j)
|
||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j)^-1, ϱ(j, k)^-1, ϱ(i, k)^-1))
|
||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j)^-1, ϱ(j, k), ϱ(i, k)))
|
||||
|
||||
commutative && continue
|
||||
|
||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j), λ(j, k), ϱ(i, k)^-1))
|
||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j), λ(j, k)^-1, ϱ(i, k)))
|
||||
|
||||
# the same as above, but with ϱ ↔ λ:
|
||||
push!(rels, _pentagonal_rule(W, A, λ(i, j)^-1, λ(j, k)^-1, λ(i, k)^-1))
|
||||
push!(rels, _pentagonal_rule(W, A, λ(i, j)^-1, λ(j, k), λ(i, k)))
|
||||
|
||||
push!(rels, _pentagonal_rule(W, A, λ(i, j), ϱ(j, k), λ(i, k)^-1))
|
||||
push!(rels, _pentagonal_rule(W, A, λ(i, j), ϱ(j, k)^-1, λ(i, k)))
|
||||
end
|
||||
end
|
||||
|
||||
if !commutative
|
||||
for (i, j) in Iterators.product(1:n, 1:n)
|
||||
if i ≠ j
|
||||
push!(rels, _hexagonal_rule(W, A, ϱ(i, j), ϱ(j, i), λ(i, j), λ(j, i)))
|
||||
w = W([A[ϱ(i, j)], A[ϱ(j, i)^-1], A[λ(i, j)]])
|
||||
push!(rels, w^2 => inv(A, w)^2)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
return A, rels
|
||||
end
|
129
src/new_autgroups.jl
Normal file
129
src/new_autgroups.jl
Normal file
@ -0,0 +1,129 @@
|
||||
function KnuthBendix.Alphabet(S::AbstractVector{<:GSymbol})
|
||||
S = unique!([S; inv.(S)])
|
||||
inversions = [findfirst(==(inv(s)), S) for s in S]
|
||||
return Alphabet(S, inversions)
|
||||
end
|
||||
|
||||
struct AutomorphismGroup{G<:Group, T, R, S} <: AbstractFPGroup
|
||||
group::G
|
||||
gens::Vector{T}
|
||||
rws::R
|
||||
domain::S
|
||||
end
|
||||
|
||||
object(G::AutomorphismGroup) = G.group
|
||||
|
||||
function SpecialAutomorphismGroup(F::FreeGroup;
|
||||
ordering=KnuthBendix.LenLex, kwargs...)
|
||||
|
||||
n = length(KnuthBendix.alphabet(F))÷2
|
||||
A, rels = gersten_relations(n, commutative=false)
|
||||
S = KnuthBendix.letters(A)[1:2(n^2 - n)]
|
||||
|
||||
rws = KnuthBendix.RewritingSystem(rels, ordering(A))
|
||||
KnuthBendix.knuthbendix!(rws; kwargs...)
|
||||
return AutomorphismGroup(F, S, rws, ntuple(i->gens(F, i), n))
|
||||
end
|
||||
|
||||
KnuthBendix.alphabet(G::AutomorphismGroup{<:FreeGroup}) = alphabet(rewriting(G))
|
||||
rewriting(G::AutomorphismGroup) = G.rws
|
||||
|
||||
function relations(G::AutomorphismGroup)
|
||||
n = length(KnuthBendix.alphabet(object(G)))÷2
|
||||
return last(gersten_relations(n, commutative=false))
|
||||
end
|
||||
|
||||
_hashing_data(f::FPGroupElement{<:AutomorphismGroup}) = normalform!.(evaluate(f))
|
||||
|
||||
function Base.:(==)(g::A, h::A) where A<:FPGroupElement{<:AutomorphismGroup}
|
||||
@assert parent(g) === parent(h)
|
||||
|
||||
if _isvalidhash(g) && _isvalidhash(h)
|
||||
hash(g) != hash(h) && return false
|
||||
end
|
||||
|
||||
normalform!(g)
|
||||
normalform!(h)
|
||||
word(g) == word(h) && return true
|
||||
|
||||
@assert isnormalform(g)
|
||||
@assert isnormalform(h)
|
||||
|
||||
img_computed, imh_computed = false, false
|
||||
|
||||
if !_isvalidhash(g)
|
||||
img = _hashing_data(g)
|
||||
_update_savedhash!(g, img)
|
||||
img_computed = true
|
||||
end
|
||||
if !_isvalidhash(h)
|
||||
imh = _hashing_data(h)
|
||||
_update_savedhash!(h, imh)
|
||||
imh_computed = true
|
||||
end
|
||||
|
||||
@assert _isvalidhash(g)
|
||||
@assert _isvalidhash(h)
|
||||
|
||||
hash(g) != hash(h) && return false
|
||||
|
||||
# words are different, but hashes agree
|
||||
if !img_computed
|
||||
img = _hashing_data(g)
|
||||
end
|
||||
if !imh_computed
|
||||
imh = _hashing_data(h)
|
||||
end
|
||||
|
||||
res = img == imh
|
||||
!res && @warn "hash collision in == :" g h
|
||||
|
||||
return res
|
||||
end
|
||||
|
||||
# eye-candy
|
||||
|
||||
Base.show(io::IO, ::Type{<:FPGroupElement{<:AutomorphismGroup{T}}}) where T <: FreeGroup = print(io, "Automorphism{$T}")
|
||||
|
||||
## Automorphism Evaluation
|
||||
|
||||
domain(f::FPGroupElement{<:AutomorphismGroup}) = deepcopy(parent(f).domain)
|
||||
# tuple(gens(object(parent(f)))...)
|
||||
|
||||
evaluate(f::FPGroupElement{<:AutomorphismGroup{<:FreeGroup}}) =
|
||||
evaluate!(domain(f), f)
|
||||
|
||||
function evaluate!(t::NTuple{N, T}, f::FPGroupElement{<:AutomorphismGroup{<:FreeGroup}}) where {T<:FPGroupElement, N}
|
||||
A = alphabet(f)
|
||||
for idx in word(f)
|
||||
t = evaluate!(t, A[idx])::NTuple{N, T}
|
||||
end
|
||||
return t
|
||||
end
|
||||
|
||||
function evaluate!(v::NTuple{N, T}, s::AutSymbol) where {N, T}
|
||||
@assert s.pow in (-1, 1)
|
||||
return evaluate!(v, s.fn, isone(s.pow))::NTuple{N, T}
|
||||
end
|
||||
|
||||
function evaluate!(v, ϱ::RTransvect, flag)
|
||||
if flag
|
||||
append!(New.word(v[ϱ.i]), New.word(v[ϱ.j] ))
|
||||
else
|
||||
append!(New.word(v[ϱ.i]), New.word(v[ϱ.j]^-1))
|
||||
end
|
||||
_setnormalform!(v[ϱ.i], false)
|
||||
_setvalidhash!(v[ϱ.i], false)
|
||||
return v
|
||||
end
|
||||
|
||||
function evaluate!(v, λ::LTransvect, flag)
|
||||
if flag
|
||||
prepend!(New.word(v[λ.i]), New.word(v[λ.j] ))
|
||||
else
|
||||
prepend!(New.word(v[λ.i]), New.word(v[λ.j]^-1))
|
||||
end
|
||||
_setnormalform!(v[λ.i], false)
|
||||
_setvalidhash!(v[λ.i], false)
|
||||
return v
|
||||
end
|
Loading…
Reference in New Issue
Block a user