mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-12-26 02:20:30 +01:00
fix tests
This commit is contained in:
parent
44f08716d2
commit
29be715c46
@ -1,73 +1,93 @@
|
|||||||
@testset "DirectProducts" begin
|
@testset "DirectPowers" begin
|
||||||
|
|
||||||
×(a,b) = Groups.pow(a,b)
|
×(a,b) = Groups.DirectPower(a,b)
|
||||||
|
|
||||||
@testset "Constructors" begin
|
@testset "Constructors" begin
|
||||||
G = PermutationGroup(3)
|
G = PermutationGroup(3)
|
||||||
g = G([2,3,1])
|
|
||||||
|
|
||||||
@test Groups.DirectProductGroup(G,2) isa AbstractAlgebra.Group
|
@test Groups.DirectPowerGroup(G,2) isa AbstractAlgebra.Group
|
||||||
@test G×G isa AbstractAlgebra.Group
|
@test G×G isa AbstractAlgebra.Group
|
||||||
@test Groups.DirectProductGroup(G,2) isa Groups.DirectProductGroup{Generic.PermGroup{Int64}}
|
@test Groups.DirectPowerGroup(G,2) isa Groups.DirectPowerGroup{2, Generic.PermGroup{Int64}}
|
||||||
|
|
||||||
@test (G×G)×G == DirectProductGroup(G, 3)
|
@test (G×G)×G == DirectPowerGroup(G, 3)
|
||||||
@test (G×G)×G == (G×G)×G
|
@test (G×G)×G == (G×G)×G
|
||||||
|
|
||||||
F = GF(13)
|
GG = DirectPowerGroup(G,2)
|
||||||
FF = F×F
|
@test (G×G)() isa GroupElem
|
||||||
@test FF×F == F×FF
|
@test (G×G)((G(), G())) isa GroupElem
|
||||||
|
@test (G×G)([G(), G()]) isa GroupElem
|
||||||
|
|
||||||
GG = DirectProductGroup(G,2)
|
@test Groups.DirectPowerGroupElem((G(), G())) == (G×G)()
|
||||||
|
|
||||||
@test Groups.DirectProductGroupElem([G(), G()]) == (G×G)()
|
|
||||||
@test GG(G(), G()) == (G×G)()
|
@test GG(G(), G()) == (G×G)()
|
||||||
|
|
||||||
@test GG([g, g^2]) isa GroupElem
|
g = perm"(1,2,3)"
|
||||||
@test GG([g, g^2]) isa Groups.DirectProductGroupElem{Generic.perm{Int64}}
|
|
||||||
|
|
||||||
h = GG([g,g^2])
|
@test GG(g, g^2) isa GroupElem
|
||||||
|
@test GG(g, g^2) isa Groups.DirectPowerGroupElem{2, Generic.perm{Int64}}
|
||||||
|
|
||||||
|
h = GG(g,g^2)
|
||||||
|
|
||||||
@test h == GG(h)
|
@test h == GG(h)
|
||||||
|
|
||||||
@test GG(g, g^2) isa GroupElem
|
@test GG(g, g^2) isa GroupElem
|
||||||
@test GG(g, g^2) isa Groups.DirectProductGroupElem
|
@test GG(g, g^2) isa Groups.DirectPowerGroupElem
|
||||||
|
|
||||||
@test_throws DomainError GG(g,g,g)
|
@test_throws MethodError GG(g,g,g)
|
||||||
@test GG(g,g^2) == h
|
@test GG(g,g^2) == h
|
||||||
|
|
||||||
@test h[1] == g
|
@test h[1] == g
|
||||||
@test h[2] == g^2
|
@test h[2] == g^2
|
||||||
h[2] = G()
|
h = GG(g, G())
|
||||||
@test h == GG(g, G())
|
@test h == GG(g, G())
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Basic arithmetic" begin
|
@testset "Basic arithmetic" begin
|
||||||
G = PermutationGroup(3)
|
G = PermutationGroup(3)
|
||||||
g = G([2,3,1])
|
GG = G×G
|
||||||
h = (G×G)([g,g^2])
|
i = perm"(1,3)"
|
||||||
|
g = perm"(1,2,3)"
|
||||||
|
|
||||||
@test h^2 == (G×G)(g^2,g)
|
h = GG(g,g^2)
|
||||||
@test h^6 == (G×G)()
|
k = GG(g^3, g^2)
|
||||||
|
|
||||||
|
@test h^2 == GG(g^2,g)
|
||||||
|
@test h^6 == GG()
|
||||||
|
|
||||||
@test h*h == h^2
|
@test h*h == h^2
|
||||||
|
@test h*k == GG(g,g)
|
||||||
|
|
||||||
@test h*inv(h) == (G×G)()
|
@test h*inv(h) == (G×G)()
|
||||||
|
|
||||||
|
w = GG(g,i)*GG(i,g)
|
||||||
|
@test w == GG(perm"(1,2)(3)", perm"(2,3)")
|
||||||
|
@test w == inv(w)
|
||||||
|
@test w^2 == w*w == GG()
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "elem/parent_types" begin
|
@testset "elem/parent_types" begin
|
||||||
G = PermutationGroup(3)
|
G = PermutationGroup(3)
|
||||||
g = G([2,3,1])
|
g = perm"(1,2,3)"
|
||||||
|
|
||||||
@test elem_type(G×G) == DirectProductGroupElem{elem_type(G)}
|
@test elem_type(G×G) == DirectPowerGroupElem{2, elem_type(G)}
|
||||||
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectProductGroup{typeof(G)}
|
@test elem_type(G×G×G) == DirectPowerGroupElem{3, elem_type(G)}
|
||||||
@test parent((G×G)(g,g^2)) == DirectProductGroup(G,2)
|
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectPowerGroup{2, typeof(G)}
|
||||||
|
@test parent(DirectPowerGroupElem((g,g^2,g^3))) == DirectPowerGroup(G,3)
|
||||||
|
|
||||||
F = AdditiveGroup(GF(13))
|
F = AdditiveGroup(GF(13))
|
||||||
|
|
||||||
@test elem_type(F×F) == DirectProductGroupElem{Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}}
|
@test elem_type(F×F) ==
|
||||||
@test parent_type(typeof((F×F)(1,5))) == Groups.DirectProductGroup{Groups.AddGrp{AbstractAlgebra.GFField{Int}}}
|
DirectPowerGroupElem{2, Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}}
|
||||||
parent((F×F)(1,5)) == DirectProductGroup(F,2)
|
@test parent_type(typeof((F×F)(1,5))) ==
|
||||||
|
Groups.DirectPowerGroup{2, Groups.AddGrp{AbstractAlgebra.GFField{Int}}}
|
||||||
|
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
|
||||||
|
|
||||||
|
F = MultiplicativeGroup(GF(13))
|
||||||
|
|
||||||
|
@test elem_type(F×F) ==
|
||||||
|
DirectPowerGroupElem{2, Groups.MltGrpElem{AbstractAlgebra.gfelem{Int}}}
|
||||||
|
@test parent_type(typeof((F×F)(1,5))) ==
|
||||||
|
Groups.DirectPowerGroup{2, Groups.MltGrp{AbstractAlgebra.GFField{Int}}}
|
||||||
|
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Additive/Multiplicative groups" begin
|
@testset "Additive/Multiplicative groups" begin
|
||||||
@ -76,9 +96,6 @@
|
|||||||
F, a = NumberField(x^3 + x + 1, "a")
|
F, a = NumberField(x^3 + x + 1, "a")
|
||||||
G = PermutationGroup(3)
|
G = PermutationGroup(3)
|
||||||
|
|
||||||
GG = Groups.DirectProductGroup(G,2)
|
|
||||||
FF = Groups.DirectProductGroup(F,2)
|
|
||||||
|
|
||||||
@testset "MltGrp basic functionality" begin
|
@testset "MltGrp basic functionality" begin
|
||||||
Gr = MltGrp(F)
|
Gr = MltGrp(F)
|
||||||
@test Gr(a) isa MltGrpElem
|
@test Gr(a) isa MltGrpElem
|
||||||
@ -104,22 +121,22 @@
|
|||||||
|
|
||||||
R, x = PolynomialRing(QQ, "x")
|
R, x = PolynomialRing(QQ, "x")
|
||||||
F, a = NumberField(x^3 + x + 1, "a")
|
F, a = NumberField(x^3 + x + 1, "a")
|
||||||
FF = Groups.DirectProductGroup(MltGrp(F),2)
|
FF = Groups.DirectPowerGroup(MltGrp(F),2)
|
||||||
|
|
||||||
@test FF([a,1]) isa GroupElem
|
@test FF([a,1]) isa GroupElem
|
||||||
@test FF([a,1]) isa DirectProductGroupElem
|
@test FF([a,1]) isa DirectPowerGroupElem
|
||||||
@test FF([a,1]) isa DirectProductGroupElem{MltGrpElem{elem_type(F)}}
|
@test FF([a,1]) isa DirectPowerGroupElem{2, MltGrpElem{elem_type(F)}}
|
||||||
@test_throws DomainError FF(1,0)
|
@test_throws DomainError FF(1,0)
|
||||||
@test_throws DomainError FF([0,1])
|
@test_throws DomainError FF([0,1])
|
||||||
@test_throws DomainError FF([1,0])
|
@test_throws DomainError FF([1,0])
|
||||||
|
|
||||||
@test MltGrp(F) isa AbstractAlgebra.Group
|
@test MltGrp(F) isa AbstractAlgebra.Group
|
||||||
@test MltGrp(F) isa MultiplicativeGroup
|
@test MltGrp(F) isa MultiplicativeGroup
|
||||||
@test DirectProductGroup(MltGrp(F), 2) isa AbstractAlgebra.Group
|
@test DirectPowerGroup(MltGrp(F), 2) isa AbstractAlgebra.Group
|
||||||
@test DirectProductGroup(MltGrp(F), 2) isa DirectProductGroup{MltGrp{typeof(F)}}
|
@test DirectPowerGroup(MltGrp(F), 2) isa DirectPowerGroup{2, MltGrp{typeof(F)}}
|
||||||
|
|
||||||
F, a = NumberField(x^3 + x + 1, "a")
|
F, a = NumberField(x^3 + x + 1, "a")
|
||||||
FF = DirectProductGroup(MltGrp(F), 2)
|
FF = DirectPowerGroup(MltGrp(F), 2)
|
||||||
|
|
||||||
@test FF(a,a+1) == FF([a,a+1])
|
@test FF(a,a+1) == FF([a,a+1])
|
||||||
@test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a)
|
@test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a)
|
||||||
@ -138,14 +155,14 @@
|
|||||||
# Additive Group
|
# Additive Group
|
||||||
@test AddGrp(F) isa AbstractAlgebra.Group
|
@test AddGrp(F) isa AbstractAlgebra.Group
|
||||||
@test AddGrp(F) isa AdditiveGroup
|
@test AddGrp(F) isa AdditiveGroup
|
||||||
@test DirectProductGroup(AddGrp(F), 2) isa AbstractAlgebra.Group
|
@test DirectPowerGroup(AddGrp(F), 2) isa AbstractAlgebra.Group
|
||||||
@test DirectProductGroup(AddGrp(F), 2) isa DirectProductGroup{AddGrp{typeof(F)}}
|
@test DirectPowerGroup(AddGrp(F), 2) isa DirectPowerGroup{2, AddGrp{typeof(F)}}
|
||||||
|
|
||||||
FF = DirectProductGroup(AdditiveGroup(F), 2)
|
FF = DirectPowerGroup(AdditiveGroup(F), 2)
|
||||||
|
|
||||||
@test FF([0,a]) isa AbstractAlgebra.GroupElem
|
@test FF([0,a]) isa AbstractAlgebra.GroupElem
|
||||||
@test FF(F(0),a) isa DirectProductGroupElem
|
@test FF(F(0),a) isa DirectPowerGroupElem
|
||||||
@test FF(0,0) isa DirectProductGroupElem{AddGrpElem{elem_type(F)}}
|
@test FF(0,0) isa DirectPowerGroupElem{2, AddGrpElem{elem_type(F)}}
|
||||||
|
|
||||||
@test FF(F(1),a+1) == FF([1,a+1])
|
@test FF(F(1),a+1) == FF([1,a+1])
|
||||||
|
|
||||||
@ -161,31 +178,31 @@
|
|||||||
@testset "Misc" begin
|
@testset "Misc" begin
|
||||||
F = GF(5)
|
F = GF(5)
|
||||||
|
|
||||||
FF = DirectProductGroup(AdditiveGroup(F),2)
|
FF = DirectPowerGroup(AdditiveGroup(F),2)
|
||||||
@test order(FF) == 25
|
@test order(FF) == 25
|
||||||
|
|
||||||
elts = vec(collect(elements(FF)))
|
elts = vec(collect(FF))
|
||||||
@test length(elts) == 25
|
@test length(elts) == 25
|
||||||
@test all([g*inv(g) == FF() for g in elts])
|
@test all([g*inv(g) == FF() for g in elts])
|
||||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||||
|
|
||||||
FF = DirectProductGroup(MultiplicativeGroup(F), 3)
|
FF = DirectPowerGroup(MultiplicativeGroup(F), 3)
|
||||||
@test order(FF) == 64
|
@test order(FF) == 64
|
||||||
|
|
||||||
elts = vec(collect(elements(FF)))
|
elts = vec(collect(FF))
|
||||||
@test length(elts) == 64
|
@test length(elts) == 64
|
||||||
@test all([g*inv(g) == FF() for g in elts])
|
@test all([g*inv(g) == FF() for g in elts])
|
||||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||||
|
|
||||||
|
|
||||||
G = PermutationGroup(3)
|
G = PermutationGroup(3)
|
||||||
GG = Groups.DirectProductGroup(G,2)
|
GG = Groups.DirectPowerGroup(G,3)
|
||||||
@test order(GG) == 36
|
@test order(GG) == 216
|
||||||
|
|
||||||
@test isa([elements(GG)...], Vector{Groups.DirectProductGroupElem{elem_type(G)}})
|
@test isa(collect(GG), Vector{Groups.DirectPowerGroupElem{3, elem_type(G)}})
|
||||||
elts = vec(collect(elements(GG)))
|
elts = vec(collect(GG))
|
||||||
|
|
||||||
@test length(elts) == 36
|
@test length(elts) == 216
|
||||||
@test all([g*inv(g) == GG() for g in elts])
|
@test all([g*inv(g) == GG() for g in elts])
|
||||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||||
end
|
end
|
||||||
|
@ -1,105 +1,103 @@
|
|||||||
@testset "WreathProducts" begin
|
@testset "WreathProducts" begin
|
||||||
S_3 = PermutationGroup(3)
|
S_3 = PermutationGroup(3)
|
||||||
S_2 = PermutationGroup(2)
|
S_2 = PermutationGroup(2)
|
||||||
b = S_3([2,3,1])
|
b = perm"(1,2,3)"
|
||||||
a = S_2([2,1])
|
a = perm"(1,2)"
|
||||||
|
|
||||||
@testset "Constructors" begin
|
@testset "Constructors" begin
|
||||||
@test isa(Groups.WreathProduct(S_2, S_3), AbstractAlgebra.Group)
|
@test Groups.WreathProduct(S_2, S_3) isa AbstractAlgebra.Group
|
||||||
B3 = Groups.WreathProduct(S_2, S_3)
|
B3 = Groups.WreathProduct(S_2, S_3)
|
||||||
@test B3 isa Groups.WreathProduct
|
@test B3 isa Groups.WreathProduct
|
||||||
@test B3 isa WreathProduct{AbstractAlgebra.Generic.PermGroup{Int}, Int}
|
@test B3 isa WreathProduct{3, AbstractAlgebra.Generic.PermGroup{Int}, Int}
|
||||||
|
|
||||||
aa = Groups.DirectProductGroupElem([a^0 ,a, a^2])
|
aa = Groups.DirectPowerGroupElem((a^0 ,a, a^2))
|
||||||
|
|
||||||
@test isa(Groups.WreathProductElem(aa, b), AbstractAlgebra.GroupElem)
|
@test Groups.WreathProductElem(aa, b) isa AbstractAlgebra.GroupElem
|
||||||
x = Groups.WreathProductElem(aa, b)
|
x = Groups.WreathProductElem(aa, b)
|
||||||
@test x isa Groups.WreathProductElem
|
@test x isa Groups.WreathProductElem
|
||||||
@test x isa Groups.WreathProductElem{AbstractAlgebra.Generic.perm{Int}, Int}
|
@test x isa
|
||||||
|
Groups.WreathProductElem{3, AbstractAlgebra.Generic.perm{Int}, Int}
|
||||||
|
|
||||||
@test B3.N == Groups.DirectProductGroup(S_2, 3)
|
@test B3.N == Groups.DirectPowerGroup(S_2, 3)
|
||||||
@test B3.P == S_3
|
@test B3.P == S_3
|
||||||
|
|
||||||
@test B3(aa, b) == Groups.WreathProductElem(aa, b)
|
@test B3(aa, b) == Groups.WreathProductElem(aa, b)
|
||||||
@test B3(b) == Groups.WreathProductElem(B3.N(), b)
|
@test B3(b) == Groups.WreathProductElem(B3.N(), b)
|
||||||
@test B3(aa) == Groups.WreathProductElem(aa, S_3())
|
@test B3(aa) == Groups.WreathProductElem(aa, S_3())
|
||||||
|
|
||||||
@test B3([a^0 ,a, a^2], perm"(1,2,3)") isa WreathProductElem
|
@test B3((a^0 ,a, a^2), b) isa WreathProductElem
|
||||||
|
|
||||||
@test B3([a^0 ,a, a^2], perm"(1,2,3)") == B3(aa, b)
|
@test B3((a^0 ,a, a^2), b) == B3(aa, b)
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Types" begin
|
@testset "Types" begin
|
||||||
B3 = Groups.WreathProduct(S_2, S_3)
|
B3 = Groups.WreathProduct(S_2, S_3)
|
||||||
|
|
||||||
@test elem_type(B3) == Groups.WreathProductElem{perm{Int}, Int}
|
@test elem_type(B3) == Groups.WreathProductElem{3, perm{Int}, Int}
|
||||||
|
|
||||||
@test parent_type(typeof(B3())) == Groups.WreathProduct{parent_type(typeof(B3.N.group())), Int}
|
@test parent_type(typeof(B3())) == Groups.WreathProduct{3, parent_type(typeof(B3.N.group())), Int}
|
||||||
|
|
||||||
@test parent(B3()) == Groups.WreathProduct(S_2,S_3)
|
@test parent(B3()) == Groups.WreathProduct(S_2,S_3)
|
||||||
@test parent(B3()) == B3
|
@test parent(B3()) == B3
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Basic operations on WreathProductElem" begin
|
@testset "Basic operations on WreathProductElem" begin
|
||||||
aa = Groups.DirectProductGroupElem([a^0 ,a, a^2])
|
aa = Groups.DirectPowerGroupElem((a^0 ,a, a^2))
|
||||||
B3 = Groups.WreathProduct(S_2, S_3)
|
B3 = Groups.WreathProduct(S_2, S_3)
|
||||||
g = B3(aa, b)
|
g = B3(aa, b)
|
||||||
|
|
||||||
@test g.p == b
|
@test g.p == b
|
||||||
@test g.n == DirectProductGroupElem(aa.elts)
|
@test g.n == DirectPowerGroupElem(aa.elts)
|
||||||
|
|
||||||
h = deepcopy(g)
|
h = deepcopy(g)
|
||||||
@test h == g
|
@test h == g
|
||||||
@test !(g === h)
|
@test !(g === h)
|
||||||
|
|
||||||
g.n[1] = parent(g.n[1])(a)
|
g = B3(Groups.DirectPowerGroupElem((a ,a, a^2)), g.p)
|
||||||
|
|
||||||
@test g.n[1] == parent(g.n[1])(a)
|
@test g.n[1] == parent(g.n[1])(a)
|
||||||
@test g != h
|
@test g != h
|
||||||
|
|
||||||
@test hash(g) != hash(h)
|
@test hash(g) != hash(h)
|
||||||
|
|
||||||
g.n[1] = a
|
|
||||||
@test g.n[1] == parent(g.n[1])(a)
|
|
||||||
@test g != h
|
|
||||||
|
|
||||||
@test hash(g) != hash(h)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Group arithmetic" begin
|
@testset "Group arithmetic" begin
|
||||||
B4 = Groups.WreathProduct(AdditiveGroup(GF(3)), PermutationGroup(4))
|
B4 = Groups.WreathProduct(AdditiveGroup(GF(3)), PermutationGroup(4))
|
||||||
|
|
||||||
x = B4([0,1,2,0], perm"(1,2,3)(4)")
|
x = B4((0,1,2,0), perm"(1,2,3)(4)")
|
||||||
@test inv(x) == B4([1,0,2,0], perm"(1,3,2)(4)")
|
@test inv(x) == B4((1,0,2,0), perm"(1,3,2)(4)")
|
||||||
|
|
||||||
y = B4([1,0,1,2], perm"(1,4)(2,3)")
|
y = B4((1,0,1,2), perm"(1,4)(2,3)")
|
||||||
@test inv(y) == B4([1,2,0,2], perm"(1,4)(2,3)")
|
@test inv(y) == B4((1,2,0,2), perm"(1,4)(2,3)")
|
||||||
|
|
||||||
@test x*y == B4([0,2,0,2], perm"(1,3,4)(2)")
|
@test x*y == B4((0,2,0,2), perm"(1,3,4)(2)")
|
||||||
|
|
||||||
@test y*x == B4([1,2,2,2], perm"(1,4,2)(3)")
|
@test y*x == B4((1,2,2,2), perm"(1,4,2)(3)")
|
||||||
|
|
||||||
|
|
||||||
@test inv(x)*y == B4([2,1,2,2], perm"(1,2,4)(3)")
|
@test inv(x)*y == B4((2,1,2,2), perm"(1,2,4)(3)")
|
||||||
|
|
||||||
@test y*inv(x) == B4([1,2,1,0], perm"(1,4,3)(2)")
|
@test y*inv(x) == B4((1,2,1,0), perm"(1,4,3)(2)")
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@testset "Misc" begin
|
@testset "Misc" begin
|
||||||
B3 = Groups.WreathProduct(GF(3), S_3)
|
B3 = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3)
|
||||||
@test order(B3) == 3^3*6
|
@test order(B3) == 3^3*6
|
||||||
|
@test collect(B3) isa Vector{
|
||||||
|
WreathProductElem{3, AddGrpElem{AbstractAlgebra.gfelem{Int}}, Int}}
|
||||||
|
|
||||||
# B3 = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
|
B3 = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
|
||||||
# @test order(B3) == 2^3*6
|
@test order(B3) == 2^3*6
|
||||||
|
@test collect(B3) isa Vector{
|
||||||
|
WreathProductElem{3, MltGrpElem{AbstractAlgebra.gfelem{Int}}, Int}}
|
||||||
|
|
||||||
Wr = WreathProduct(PermutationGroup(2),PermutationGroup(4))
|
Wr = WreathProduct(PermutationGroup(2),PermutationGroup(4))
|
||||||
|
|
||||||
@test isa([elements(Wr)...], Vector{Groups.WreathProductElem{Generic.perm{Int}, Int}})
|
elts = collect(Wr)
|
||||||
|
@test elts isa Vector{Groups.WreathProductElem{4, Generic.perm{Int}, Int}}
|
||||||
@test order(Wr) == 2^4*factorial(4)
|
@test order(Wr) == 2^4*factorial(4)
|
||||||
|
|
||||||
elts = [elements(Wr)...]
|
|
||||||
|
|
||||||
@test length(elts) == order(Wr)
|
@test length(elts) == order(Wr)
|
||||||
@test all([g*inv(g) == Wr() for g in elts])
|
@test all([g*inv(g) == Wr() for g in elts])
|
||||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||||
|
Loading…
Reference in New Issue
Block a user