1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-25 02:05:30 +01:00

formatting

This commit is contained in:
Marek Kaluba 2022-10-14 01:14:38 +02:00
parent 5752d67009
commit 29e2097f2f
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
23 changed files with 227 additions and 218 deletions

View File

@ -6,7 +6,7 @@ function gersten_alphabet(n::Integer; commutative::Bool = true)
append!(S, [λ(i, j) for (i, j) in indexing])
end
return Alphabet(S)
return Alphabet(mapreduce(x -> [x, inv(x)], union, S))
end
function _commutation_rule(
@ -46,7 +46,7 @@ gersten_relations(n::Integer; commutative) =
function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:AbstractWord}
@assert n > 1 "Gersten relations are defined only for n>1, got n=$n"
A = gersten_alphabet(n, commutative=commutative)
@assert length(A) <= KnuthBendix._max_alphabet_length(W) "Type $W can not represent words over alphabet with $(length(A)) letters."
@assert length(A) <= typemax(eltype(W)) "Type $W can not represent words over alphabet with $(length(A)) letters."
rels = Pair{W,W}[]

View File

@ -17,7 +17,7 @@ function Base.show(io::IO, S::SurfaceGroup)
end
end
function SurfaceGroup(genus::Integer, boundaries::Integer)
function SurfaceGroup(genus::Integer, boundaries::Integer, W=Word{Int16})
@assert genus > 1
# The (confluent) rewriting systems comes from
@ -37,8 +37,8 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
for i in 1:genus
subscript = join('₀' + d for d in reverse(digits(i)))
KnuthBendix.set_inversion!(Al, "a" * subscript, "A" * subscript)
KnuthBendix.set_inversion!(Al, "b" * subscript, "B" * subscript)
KnuthBendix.setinverse!(Al, "a" * subscript, "A" * subscript)
KnuthBendix.setinverse!(Al, "b" * subscript, "B" * subscript)
end
if boundaries == 0
@ -48,7 +48,7 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
x = 4 * i
append!(word, [x, x - 2, x - 1, x - 3])
end
comms = Word(word)
comms = W(word)
word_rels = [comms => one(comms)]
rws = let R = KnuthBendix.RewritingSystem(word_rels, KnuthBendix.Recursive(Al))
@ -60,10 +60,10 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
KnuthBendix.IndexAutomaton(KnuthBendix.knuthbendix(R))
end
else
throw("Not Implemented")
throw("Not Implemented for MCG with $boundaryies boundary components")
end
F = FreeGroup(alphabet(rws))
F = FreeGroup(Al)
rels = [F(lhs) => F(rhs) for (lhs, rhs) in word_rels]
return SurfaceGroup(genus, boundaries, [Al[i] for i in 2:2:length(Al)], rels, rws)

View File

@ -188,7 +188,7 @@ function SymplecticMappingClass(
i::Integer,
j::Integer;
minus=false,
inverse = false,
inverse=false
)
@assert i > 0 && j > 0
id === :A && @assert i j

View File

@ -207,7 +207,8 @@ function generated_evaluate(a::FPGroupElement{<:AutomorphismGroup})
@assert length(v.args) >= 2
if length(v.args) > 2
for (j, a) in pairs(v.args)
if a isa Expr && a.head == :call "$a"
if a isa Expr && a.head == :call
"$a"
@assert a.args[1] == :inv
if !(a in keys(locals))
locals[a] = Symbol("var_#$locals_counter")

View File

@ -5,7 +5,7 @@ struct SpecialLinearGroup{N, T, R, A, S} <: MatrixGroup{N,T}
alphabet::A
gens::S
function SpecialLinearGroup{N}(base_ring) where N
function SpecialLinearGroup{N}(base_ring) where {N}
S = [ElementaryMatrix{N}(i, j, one(base_ring)) for i in 1:N for j in 1:N if i j]
alphabet = Alphabet(S)
@ -19,7 +19,7 @@ struct SpecialLinearGroup{N, T, R, A, S} <: MatrixGroup{N,T}
end
end
GroupsCore.ngens(SL::SpecialLinearGroup{N}) where N = N^2 - N
GroupsCore.ngens(SL::SpecialLinearGroup{N}) where {N} = N^2 - N
Base.show(io::IO, SL::SpecialLinearGroup{N,T}) where {N,T} =
print(io, "special linear group of $N×$N matrices over $T")
@ -28,7 +28,7 @@ function Base.show(
io::IO,
::MIME"text/plain",
sl::Groups.AbstractFPGroupElement{<:SpecialLinearGroup{N}}
) where N
) where {N}
Groups.normalform!(sl)

View File

@ -5,7 +5,7 @@ struct SymplecticGroup{N, T, R, A, S} <: MatrixGroup{N,T}
alphabet::A
gens::S
function SymplecticGroup{N}(base_ring) where N
function SymplecticGroup{N}(base_ring) where {N}
S = symplectic_gens(N, eltype(base_ring))
alphabet = Alphabet(S)
@ -21,7 +21,7 @@ end
GroupsCore.ngens(Sp::SymplecticGroup) = length(Sp.gens)
Base.show(io::IO, ::SymplecticGroup{N}) where N = print(io, "group of $N×$N symplectic matrices")
Base.show(io::IO, ::SymplecticGroup{N}) where {N} = print(io, "group of $N×$N symplectic matrices")
function Base.show(
io::IO,
@ -65,6 +65,6 @@ function _std_symplectic_form(m::AbstractMatrix)
return Ω
end
function issymplectic(mat::M, Ω = _std_symplectic_form(mat)) where M <: AbstractMatrix
function issymplectic(mat::M, Ω=_std_symplectic_form(mat)) where {M<:AbstractMatrix}
return Ω == transpose(mat) * Ω * mat
end

View File

@ -10,7 +10,7 @@ function Base.:(==)(m1::M1, m2::M2) where {M1<:MatrixGroupElement, M2<:MatrixGro
return matrix_repr(m1) == matrix_repr(m2)
end
Base.size(m::MatrixGroupElement{N}) where N = (N, N)
Base.size(m::MatrixGroupElement{N}) where {N} = (N, N)
Base.eltype(m::MatrixGroupElement{N,T}) where {N,T} = T
# three structural assumptions about matrix groups

View File

@ -2,7 +2,7 @@ struct ElementaryMatrix{N, T} <: Groups.GSymbol
i::Int
j::Int
val::T
ElementaryMatrix{N}(i, j, val=1) where N =
ElementaryMatrix{N}(i, j, val=1) where {N} =
(@assert i j; new{N,typeof(val)}(i, j, val))
end
@ -11,13 +11,13 @@ function Base.show(io::IO, e::ElementaryMatrix)
!isone(e.val) && print(io, "^$(e.val)")
end
Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where N =
Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where {N} =
e.i == f.i && e.j == f.j && e.val == f.val
Base.hash(e::ElementaryMatrix, h::UInt) =
hash(typeof(e), hash((e.i, e.j, e.val), h))
Base.inv(e::ElementaryMatrix{N}) where N =
Base.inv(e::ElementaryMatrix{N}) where {N} =
ElementaryMatrix{N}(e.i, e.j, -e.val)
function matrix_repr(e::ElementaryMatrix{N,T}) where {N,T}

View File

@ -3,7 +3,7 @@ struct ElementarySymplectic{N, T} <: Groups.GSymbol
i::Int
j::Int
val::T
function ElementarySymplectic{N}(s::Symbol, i::Integer, j::Integer, val=1) where N
function ElementarySymplectic{N}(s::Symbol, i::Integer, j::Integer, val=1) where {N}
@assert s (:A, :B)
@assert iseven(N)
n = N ÷ 2
@ -22,9 +22,9 @@ function Base.show(io::IO, s::ElementarySymplectic)
!isone(s.val) && print(io, "^$(s.val)")
end
_ind(s::ElementarySymplectic{N}) where N = (s.i, s.j)
_ind(s::ElementarySymplectic{N}) where {N} = (s.i, s.j)
_local_ind(N_half::Integer, i::Integer) = ifelse(i <= N_half, i, i - N_half)
function _dual_ind(s::ElementarySymplectic{N}) where N
function _dual_ind(s::ElementarySymplectic{N}) where {N}
if s.symbol === :A && return _ind(s)
else#if s.symbol === :B
return _dual_ind(N ÷ 2, s.i, s.j)
@ -51,10 +51,10 @@ end
Base.hash(s::ElementarySymplectic, h::UInt) =
hash(Set([_ind(s); _dual_ind(s)]), hash(s.symbol, hash(s.val, h)))
LinearAlgebra.transpose(s::ElementarySymplectic{N}) where N =
LinearAlgebra.transpose(s::ElementarySymplectic{N}) where {N} =
ElementarySymplectic{N}(s.symbol, s.j, s.i, s.val)
Base.inv(s::ElementarySymplectic{N}) where N =
Base.inv(s::ElementarySymplectic{N}) where {N} =
ElementarySymplectic{N}(s.symbol, s.i, s.j, -s.val)
function matrix_repr(s::ElementarySymplectic{N,T}) where {N,T}

View File

@ -223,7 +223,7 @@ function FPGroup(
G::AbstractFPGroup,
rels::AbstractVector{<:Pair{GEl,GEl}};
ordering=KnuthBendix.ordering(G),
kwargs...,
kwargs...
) where {GEl<:FPGroupElement}
for (lhs, rhs) in rels
@assert parent(lhs) === parent(rhs) === G

View File

@ -1,11 +1,22 @@
"""
wlmetric_ball(S::AbstractVector{<:GroupElem}
[, center=one(first(S)); radius=2, op=*])
[, center=one(first(S)); radius=2, op=*, threading=true])
Compute metric ball as a list of elements of non-decreasing length, given the
word-length metric on the group generated by `S`. The ball is centered at `center`
(by default: the identity element). `radius` and `op` keywords specify the
radius and multiplication operation to be used.
"""
function wlmetric_ball(
S::AbstractVector{T},
center::T=one(first(S));
radius=2,
op=*,
threading=true
) where {T}
threading && return wlmetric_ball_thr(S, center, radius=radius, op=op)
return wlmetric_ball_serial(S, center, radius=radius, op=op)
end
function wlmetric_ball_serial(S::AbstractVector{T}, center::T=one(first(S)); radius=2, op=*) where {T}
@assert radius >= 1
old = union!([center], [center * s for s in S])
@ -26,6 +37,7 @@ function _wlmetric_ball(S, old, radius, op, collect, unique)
(g = op(o, s); hash(g); g)
for o in @view(old[sizes[end-1]:end]) for s in S
)
append!(old, new)
unique(old)
end
@ -34,13 +46,3 @@ function _wlmetric_ball(S, old, radius, op, collect, unique)
return old, sizes[2:end]
end
function wlmetric_ball(
S::AbstractVector{T},
center::T = one(first(S));
radius = 2,
op = *,
threading = true,
) where {T}
threading && return wlmetric_ball_thr(S, center, radius = radius, op = op)
return wlmetric_ball_serial(S, center, radius = radius, op = op)
end

View File

@ -91,12 +91,12 @@
@testset "Automorphisms: hash and evaluate" begin
@test Groups.domain(gens(A, 1)) == D
g, h = gens(A, 1), gens(A, 8)
g, h = gens(A, 1), gens(A, 8) # (ϱ₁.₂, ϱ₃.₂)
@test evaluate(g * h) == evaluate(h * g)
@test (g * h).savedhash == zero(UInt)
@test sprint(show, typeof(g)) == "Automorphism{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}"
@test contains(sprint(show, typeof(g)), "Automorphism{FreeGroup{Symbol")
a = g * h
b = h * g

View File

@ -3,6 +3,8 @@
π₁Σ = Groups.SurfaceGroup(genus, 0)
@test contains(sprint(print, π₁Σ), "surface")
Groups.PermRightAut(p::Perm) = Groups.PermRightAut(p.d)
# Groups.PermLeftAut(p::Perm) = Groups.PermLeftAut(p.d)
autπ₁Σ = let autπ₁Σ = AutomorphismGroup(π₁Σ)

View File

@ -4,9 +4,10 @@ using Groups.MatrixGroups
@testset "SL(n, )" begin
SL3Z = SpecialLinearGroup{3}(Int8)
S = gens(SL3Z); union!(S, inv.(S))
S = gens(SL3Z)
union!(S, inv.(S))
E, sizes = Groups.wlmetric_ball(S, radius=4)
_, sizes = Groups.wlmetric_ball(S, radius=4)
@test sizes == [13, 121, 883, 5455]
@ -17,10 +18,11 @@ using Groups.MatrixGroups
r = E(2, 3)^-3
s = E(1, 3)^2 * E(3, 2)^-1
S = [w,r,s]; S = unique([S; inv.(S)]);
_, sizes = Groups.wlmetric_ball(S, radius=4);
S = [w, r, s]
S = unique([S; inv.(S)])
_, sizes = Groups.wlmetric_ball(S, radius=4)
@test sizes == [7, 33, 141, 561]
_, sizes = Groups.wlmetric_ball_serial(S, radius=4);
_, sizes = Groups.wlmetric_ball_serial(S, radius=4)
@test sizes == [7, 33, 141, 561]
Logging.with_logger(Logging.NullLogger()) do
@ -50,6 +52,7 @@ using Groups.MatrixGroups
@testset "Sp(6, )" begin
Sp6 = MatrixGroups.SymplecticGroup{6}(Int8)
Logging.with_logger(Logging.NullLogger()) do
@testset "GroupsCore conformance" begin
test_Group_interface(Sp6)
g = Sp6(rand(1:length(alphabet(Sp6)), 10))
@ -57,6 +60,7 @@ using Groups.MatrixGroups
test_GroupElement_interface(g, h)
end
end
@test contains(sprint(print, Sp6), "group of 6×6 symplectic matrices")