1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-12 22:22:32 +01:00

additional tests for WreathProducts

This commit is contained in:
kalmarek 2019-01-03 02:43:48 +01:00
parent e418695283
commit 2a359f52b1

View File

@ -22,6 +22,8 @@
@test B3.P == S_3
@test B3(aa, b) == Groups.WreathProductElem(aa, b)
w = B3(aa, b)
@test B3(w) == w
@test B3(b) == Groups.WreathProductElem(B3.N(), b)
@test B3(aa) == Groups.WreathProductElem(aa, S_3())
@ -78,19 +80,23 @@
@test inv(x)*y == B4((2,1,2,2), perm"(1,2,4)(3)")
@test y*inv(x) == B4((1,2,1,0), perm"(1,4,3)(2)")
@test (x*y)^6 == ((x*y)^2)^3
end
@testset "Misc" begin
B3 = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3)
@test order(B3) == 3^3*6
@test collect(B3) isa Vector{
@testset "Iteration" begin
B3_a = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3)
@test order(B3_a) == 3^3*6
@test collect(B3_a) isa Vector{
WreathProductElem{3, AddGrpElem{AbstractAlgebra.gfelem{Int}}, Int}}
B3 = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
@test order(B3) == 2^3*6
@test collect(B3) isa Vector{
B3_m = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
@test order(B3_m) == 2^3*6
@test collect(B3_m) isa Vector{
WreathProductElem{3, MltGrpElem{AbstractAlgebra.gfelem{Int}}, Int}}
@test length(Set([B3_a, B3_m, B3_a])) == 2
Wr = WreathProduct(PermutationGroup(2),PermutationGroup(4))
@ -102,5 +108,18 @@
@test all([g*inv(g) == Wr() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
end
@testset "Misc" begin
B3_a = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3)
@test string(B3_a) == "Wreath Product of The additive group of Finite field F_3 by Permutation group over 3 elements"
@test string(B3_a(perm"(1,3)")) == "([0,0,0]≀(1,3))"
B3_m = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
@test string(B3_m) == "Wreath Product of The multiplicative group of Finite field F_3 by Permutation group over 3 elements"
@test string(B3_m(perm"(1,3)")) == "([1,1,1]≀(1,3))"
end
end