mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-07 13:10:28 +01:00
Merge pull request #26 from kalmarek/enh/matrix_groups
add support for general matrix groups
This commit is contained in:
commit
448857ef03
1
.JuliaFormatter.toml
Symbolic link
1
.JuliaFormatter.toml
Symbolic link
@ -0,0 +1 @@
|
|||||||
|
../.JuliaFormatter.toml
|
@ -1,7 +1,7 @@
|
|||||||
name = "Groups"
|
name = "Groups"
|
||||||
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
||||||
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
||||||
version = "0.7.4"
|
version = "0.7.5"
|
||||||
|
|
||||||
[deps]
|
[deps]
|
||||||
Folds = "41a02a25-b8f0-4f67-bc48-60067656b558"
|
Folds = "41a02a25-b8f0-4f67-bc48-60067656b558"
|
||||||
|
@ -14,7 +14,14 @@ import KnuthBendix: alphabet, ordering
|
|||||||
|
|
||||||
export MatrixGroups
|
export MatrixGroups
|
||||||
|
|
||||||
export Alphabet, AutomorphismGroup, FreeGroup, FreeGroup, FPGroup, FPGroupElement, SpecialAutomorphismGroup, Homomorphism
|
export Alphabet,
|
||||||
|
AutomorphismGroup,
|
||||||
|
FreeGroup,
|
||||||
|
FreeGroup,
|
||||||
|
FPGroup,
|
||||||
|
FPGroupElement,
|
||||||
|
SpecialAutomorphismGroup,
|
||||||
|
Homomorphism
|
||||||
|
|
||||||
export alphabet, evaluate, word, gens
|
export alphabet, evaluate, word, gens
|
||||||
|
|
||||||
|
@ -1,7 +1,8 @@
|
|||||||
function _abelianize(
|
function _abelianize(
|
||||||
i::Integer,
|
i::Integer,
|
||||||
source::AutomorphismGroup{<:FreeGroup},
|
source::AutomorphismGroup{<:FreeGroup},
|
||||||
target::MatrixGroups.SpecialLinearGroup{N,T}) where {N,T}
|
target::MatrixGroups.SpecialLinearGroup{N,T},
|
||||||
|
) where {N,T}
|
||||||
n = ngens(object(source))
|
n = ngens(object(source))
|
||||||
@assert n == N
|
@assert n == N
|
||||||
aut = alphabet(source)[i]
|
aut = alphabet(source)[i]
|
||||||
@ -12,7 +13,7 @@ function _abelianize(
|
|||||||
eij = MatrixGroups.ElementaryMatrix{N}(
|
eij = MatrixGroups.ElementaryMatrix{N}(
|
||||||
aut.j,
|
aut.j,
|
||||||
aut.i,
|
aut.i,
|
||||||
ifelse(aut.inv, -one(T), one(T))
|
ifelse(aut.inv, -one(T), one(T)),
|
||||||
)
|
)
|
||||||
k = alphabet(target)[eij]
|
k = alphabet(target)[eij]
|
||||||
return word_type(target)([k])
|
return word_type(target)([k])
|
||||||
@ -24,7 +25,8 @@ end
|
|||||||
function _abelianize(
|
function _abelianize(
|
||||||
i::Integer,
|
i::Integer,
|
||||||
source::AutomorphismGroup{<:Groups.SurfaceGroup},
|
source::AutomorphismGroup{<:Groups.SurfaceGroup},
|
||||||
target::MatrixGroups.SpecialLinearGroup{N,T}) where {N,T}
|
target::MatrixGroups.SpecialLinearGroup{N,T},
|
||||||
|
) where {N,T}
|
||||||
n = ngens(Groups.object(source))
|
n = ngens(Groups.object(source))
|
||||||
@assert n == N
|
@assert n == N
|
||||||
g = alphabet(source)[i].autFn_word
|
g = alphabet(source)[i].autFn_word
|
||||||
@ -39,7 +41,7 @@ end
|
|||||||
function Groups._abelianize(
|
function Groups._abelianize(
|
||||||
i::Integer,
|
i::Integer,
|
||||||
source::AutomorphismGroup{<:Groups.SurfaceGroup},
|
source::AutomorphismGroup{<:Groups.SurfaceGroup},
|
||||||
target::MatrixGroups.SymplecticGroup{N,T}
|
target::MatrixGroups.SymplecticGroup{N,T},
|
||||||
) where {N,T}
|
) where {N,T}
|
||||||
@assert iseven(N)
|
@assert iseven(N)
|
||||||
As = alphabet(source)
|
As = alphabet(source)
|
||||||
@ -50,10 +52,10 @@ function Groups._abelianize(
|
|||||||
MatrixGroups.SpecialLinearGroup{2genus}(T)
|
MatrixGroups.SpecialLinearGroup{2genus}(T)
|
||||||
end
|
end
|
||||||
|
|
||||||
ab = Groups.Homomorphism(Groups._abelianize, source, SlN, check=false)
|
ab = Groups.Homomorphism(Groups._abelianize, source, SlN; check = false)
|
||||||
|
|
||||||
matrix_spn_map = let S = gens(target)
|
matrix_spn_map = let S = gens(target)
|
||||||
Dict(MatrixGroups.matrix_repr(g) => word(g) for g in union(S, inv.(S)))
|
Dict(MatrixGroups.matrix(g) => word(g) for g in union(S, inv.(S)))
|
||||||
end
|
end
|
||||||
|
|
||||||
# renumeration:
|
# renumeration:
|
||||||
@ -63,7 +65,7 @@ function Groups._abelianize(
|
|||||||
p = [reverse(2:2:N); reverse(1:2:N)]
|
p = [reverse(2:2:N); reverse(1:2:N)]
|
||||||
|
|
||||||
g = source([i])
|
g = source([i])
|
||||||
Mg = MatrixGroups.matrix_repr(ab(g))[p, p]
|
Mg = MatrixGroups.matrix(ab(g))[p, p]
|
||||||
|
|
||||||
return matrix_spn_map[Mg]
|
return matrix_spn_map[Mg]
|
||||||
end
|
end
|
||||||
|
@ -40,12 +40,17 @@ function _hexagonal_rule(
|
|||||||
return W(T[A[x], A[inv(y)], A[z]]) => W(T[A[z], A[w^-1], A[x]])
|
return W(T[A[x], A[inv(y)], A[z]]) => W(T[A[z], A[w^-1], A[x]])
|
||||||
end
|
end
|
||||||
|
|
||||||
gersten_relations(n::Integer; commutative) =
|
function gersten_relations(n::Integer; commutative)
|
||||||
gersten_relations(Word{UInt8}, n, commutative=commutative)
|
return gersten_relations(Word{UInt8}, n; commutative = commutative)
|
||||||
|
end
|
||||||
|
|
||||||
function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:AbstractWord}
|
function gersten_relations(
|
||||||
|
::Type{W},
|
||||||
|
n::Integer;
|
||||||
|
commutative,
|
||||||
|
) where {W<:AbstractWord}
|
||||||
@assert n > 1 "Gersten relations are defined only for n>1, got n=$n"
|
@assert n > 1 "Gersten relations are defined only for n>1, got n=$n"
|
||||||
A = gersten_alphabet(n, commutative=commutative)
|
A = gersten_alphabet(n; commutative = commutative)
|
||||||
@assert length(A) <= typemax(eltype(W)) "Type $W can not represent words over alphabet with $(length(A)) letters."
|
@assert length(A) <= typemax(eltype(W)) "Type $W can not represent words over alphabet with $(length(A)) letters."
|
||||||
|
|
||||||
rels = Pair{W,W}[]
|
rels = Pair{W,W}[]
|
||||||
@ -74,7 +79,10 @@ function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:Abstrac
|
|||||||
|
|
||||||
for (i, j, k) in Iterators.product(1:n, 1:n, 1:n)
|
for (i, j, k) in Iterators.product(1:n, 1:n, 1:n)
|
||||||
if (i ≠ j && k ≠ i && k ≠ j)
|
if (i ≠ j && k ≠ i && k ≠ j)
|
||||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j)^-1, ϱ(j, k)^-1, ϱ(i, k)^-1))
|
push!(
|
||||||
|
rels,
|
||||||
|
_pentagonal_rule(W, A, ϱ(i, j)^-1, ϱ(j, k)^-1, ϱ(i, k)^-1),
|
||||||
|
)
|
||||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j)^-1, ϱ(j, k), ϱ(i, k)))
|
push!(rels, _pentagonal_rule(W, A, ϱ(i, j)^-1, ϱ(j, k), ϱ(i, k)))
|
||||||
|
|
||||||
commutative && continue
|
commutative && continue
|
||||||
@ -83,7 +91,10 @@ function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:Abstrac
|
|||||||
push!(rels, _pentagonal_rule(W, A, ϱ(i, j), λ(j, k)^-1, ϱ(i, k)))
|
push!(rels, _pentagonal_rule(W, A, ϱ(i, j), λ(j, k)^-1, ϱ(i, k)))
|
||||||
|
|
||||||
# the same as above, but with ϱ ↔ λ:
|
# the same as above, but with ϱ ↔ λ:
|
||||||
push!(rels, _pentagonal_rule(W, A, λ(i, j)^-1, λ(j, k)^-1, λ(i, k)^-1))
|
push!(
|
||||||
|
rels,
|
||||||
|
_pentagonal_rule(W, A, λ(i, j)^-1, λ(j, k)^-1, λ(i, k)^-1),
|
||||||
|
)
|
||||||
push!(rels, _pentagonal_rule(W, A, λ(i, j)^-1, λ(j, k), λ(i, k)))
|
push!(rels, _pentagonal_rule(W, A, λ(i, j)^-1, λ(j, k), λ(i, k)))
|
||||||
|
|
||||||
push!(rels, _pentagonal_rule(W, A, λ(i, j), ϱ(j, k), λ(i, k)^-1))
|
push!(rels, _pentagonal_rule(W, A, λ(i, j), ϱ(j, k), λ(i, k)^-1))
|
||||||
@ -94,7 +105,10 @@ function gersten_relations(::Type{W}, n::Integer; commutative) where {W<:Abstrac
|
|||||||
if !commutative
|
if !commutative
|
||||||
for (i, j) in Iterators.product(1:n, 1:n)
|
for (i, j) in Iterators.product(1:n, 1:n)
|
||||||
if i ≠ j
|
if i ≠ j
|
||||||
push!(rels, _hexagonal_rule(W, A, ϱ(i, j), ϱ(j, i), λ(i, j), λ(j, i)))
|
push!(
|
||||||
|
rels,
|
||||||
|
_hexagonal_rule(W, A, ϱ(i, j), ϱ(j, i), λ(i, j), λ(j, i)),
|
||||||
|
)
|
||||||
w = W([A[ϱ(i, j)], A[ϱ(j, i)^-1], A[λ(i, j)]])
|
w = W([A[ϱ(i, j)], A[ϱ(j, i)^-1], A[λ(i, j)]])
|
||||||
push!(rels, w^2 => inv(w, A)^2)
|
push!(rels, w^2 => inv(w, A)^2)
|
||||||
end
|
end
|
||||||
|
@ -31,7 +31,15 @@ function SurfaceGroup(genus::Integer, boundaries::Integer, W=Word{Int16})
|
|||||||
ltrs = String[]
|
ltrs = String[]
|
||||||
for i in 1:genus
|
for i in 1:genus
|
||||||
subscript = join('₀' + d for d in reverse(digits(i)))
|
subscript = join('₀' + d for d in reverse(digits(i)))
|
||||||
append!(ltrs, ["A" * subscript, "a" * subscript, "B" * subscript, "b" * subscript])
|
append!(
|
||||||
|
ltrs,
|
||||||
|
[
|
||||||
|
"A" * subscript,
|
||||||
|
"a" * subscript,
|
||||||
|
"B" * subscript,
|
||||||
|
"b" * subscript,
|
||||||
|
],
|
||||||
|
)
|
||||||
end
|
end
|
||||||
Al = Alphabet(reverse!(ltrs))
|
Al = Alphabet(reverse!(ltrs))
|
||||||
|
|
||||||
@ -51,7 +59,11 @@ function SurfaceGroup(genus::Integer, boundaries::Integer, W=Word{Int16})
|
|||||||
comms = W(word)
|
comms = W(word)
|
||||||
word_rels = [comms => one(comms)]
|
word_rels = [comms => one(comms)]
|
||||||
|
|
||||||
rws = let R = KnuthBendix.RewritingSystem(word_rels, KnuthBendix.Recursive(Al))
|
rws =
|
||||||
|
let R = KnuthBendix.RewritingSystem(
|
||||||
|
word_rels,
|
||||||
|
KnuthBendix.Recursive(Al),
|
||||||
|
)
|
||||||
KnuthBendix.IndexAutomaton(KnuthBendix.knuthbendix(R))
|
KnuthBendix.IndexAutomaton(KnuthBendix.knuthbendix(R))
|
||||||
end
|
end
|
||||||
elseif boundaries == 1
|
elseif boundaries == 1
|
||||||
@ -66,7 +78,13 @@ function SurfaceGroup(genus::Integer, boundaries::Integer, W=Word{Int16})
|
|||||||
F = FreeGroup(Al)
|
F = FreeGroup(Al)
|
||||||
rels = [F(lhs) => F(rhs) for (lhs, rhs) in word_rels]
|
rels = [F(lhs) => F(rhs) for (lhs, rhs) in word_rels]
|
||||||
|
|
||||||
return SurfaceGroup(genus, boundaries, [Al[i] for i in 2:2:length(Al)], rels, rws)
|
return SurfaceGroup(
|
||||||
|
genus,
|
||||||
|
boundaries,
|
||||||
|
[Al[i] for i in 2:2:length(Al)],
|
||||||
|
rels,
|
||||||
|
rws,
|
||||||
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
rewriting(S::SurfaceGroup) = S.rw
|
rewriting(S::SurfaceGroup) = S.rw
|
||||||
@ -75,17 +93,26 @@ relations(S::SurfaceGroup) = S.relations
|
|||||||
function symplectic_twists(π₁Σ::SurfaceGroup)
|
function symplectic_twists(π₁Σ::SurfaceGroup)
|
||||||
g = genus(π₁Σ)
|
g = genus(π₁Σ)
|
||||||
|
|
||||||
saut = SpecialAutomorphismGroup(FreeGroup(2g), max_rules=1000)
|
saut = SpecialAutomorphismGroup(FreeGroup(2g); max_rules = 1000)
|
||||||
|
|
||||||
Aij = [SymplecticMappingClass(saut, :A, i, j) for i in 1:g for j in 1:g if i ≠ j]
|
Aij = [
|
||||||
|
SymplecticMappingClass(saut, :A, i, j) for i in 1:g for
|
||||||
|
j in 1:g if i ≠ j
|
||||||
|
]
|
||||||
|
|
||||||
Bij = [SymplecticMappingClass(saut, :B, i, j) for i in 1:g for j in 1:g if i ≠ j]
|
Bij = [
|
||||||
|
SymplecticMappingClass(saut, :B, i, j) for i in 1:g for
|
||||||
|
j in 1:g if i ≠ j
|
||||||
|
]
|
||||||
|
|
||||||
mBij = [SymplecticMappingClass(saut, :B, i, j, minus=true) for i in 1:g for j in 1:g if i ≠ j]
|
mBij = [
|
||||||
|
SymplecticMappingClass(saut, :B, i, j; minus = true) for i in 1:g
|
||||||
|
for j in 1:g if i ≠ j
|
||||||
|
]
|
||||||
|
|
||||||
Bii = [SymplecticMappingClass(saut, :B, i, i) for i in 1:g]
|
Bii = [SymplecticMappingClass(saut, :B, i, i) for i in 1:g]
|
||||||
|
|
||||||
mBii = [SymplecticMappingClass(saut, :B, i, i, minus=true) for i in 1:g]
|
mBii = [SymplecticMappingClass(saut, :B, i, i; minus = true) for i in 1:g]
|
||||||
|
|
||||||
return [Aij; Bij; mBij; Bii; mBii]
|
return [Aij; Bij; mBij; Bii; mBii]
|
||||||
end
|
end
|
||||||
|
@ -1,10 +1,13 @@
|
|||||||
include("transvections.jl")
|
include("transvections.jl")
|
||||||
include("gersten_relations.jl")
|
include("gersten_relations.jl")
|
||||||
|
|
||||||
function SpecialAutomorphismGroup(F::FreeGroup; ordering=KnuthBendix.LenLex, kwargs...)
|
function SpecialAutomorphismGroup(
|
||||||
|
F::FreeGroup;
|
||||||
|
ordering = KnuthBendix.LenLex,
|
||||||
|
kwargs...,
|
||||||
|
)
|
||||||
n = length(alphabet(F)) ÷ 2
|
n = length(alphabet(F)) ÷ 2
|
||||||
A, rels = gersten_relations(n, commutative=false)
|
A, rels = gersten_relations(n; commutative = false)
|
||||||
S = [A[i] for i in 1:2:length(A)]
|
S = [A[i] for i in 1:2:length(A)]
|
||||||
|
|
||||||
max_rules = 1000 * n
|
max_rules = 1000 * n
|
||||||
@ -12,7 +15,10 @@ function SpecialAutomorphismGroup(F::FreeGroup; ordering=KnuthBendix.LenLex, kwa
|
|||||||
rws = Logging.with_logger(Logging.NullLogger()) do
|
rws = Logging.with_logger(Logging.NullLogger()) do
|
||||||
rws = KnuthBendix.RewritingSystem(rels, ordering(A))
|
rws = KnuthBendix.RewritingSystem(rels, ordering(A))
|
||||||
# the rws is not confluent, let's suppress warning about it
|
# the rws is not confluent, let's suppress warning about it
|
||||||
KnuthBendix.knuthbendix(rws, KnuthBendix.Settings(; max_rules=max_rules, kwargs...))
|
return KnuthBendix.knuthbendix(
|
||||||
|
rws,
|
||||||
|
KnuthBendix.Settings(; max_rules = max_rules, kwargs...),
|
||||||
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
idxA = KnuthBendix.IndexAutomaton(rws)
|
idxA = KnuthBendix.IndexAutomaton(rws)
|
||||||
@ -21,5 +27,5 @@ end
|
|||||||
|
|
||||||
function relations(G::AutomorphismGroup{<:FreeGroup})
|
function relations(G::AutomorphismGroup{<:FreeGroup})
|
||||||
n = length(alphabet(object(G))) ÷ 2
|
n = length(alphabet(object(G))) ÷ 2
|
||||||
return last(gersten_relations(n, commutative=false))
|
return last(gersten_relations(n; commutative = false))
|
||||||
end
|
end
|
||||||
|
@ -47,7 +47,15 @@ function Te_diagonal(λ::Groups.ΡΛ, ϱ::Groups.ΡΛ, i::Integer)
|
|||||||
return g
|
return g
|
||||||
end
|
end
|
||||||
|
|
||||||
function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
|
function Te_lantern(
|
||||||
|
A::Alphabet,
|
||||||
|
b₀::T,
|
||||||
|
a₁::T,
|
||||||
|
a₂::T,
|
||||||
|
a₃::T,
|
||||||
|
a₄::T,
|
||||||
|
a₅::T,
|
||||||
|
) where {T}
|
||||||
a₀ = (a₁ * a₂ * a₃)^4 * inv(b₀, A)
|
a₀ = (a₁ * a₂ * a₃)^4 * inv(b₀, A)
|
||||||
X = a₄ * a₅ * a₃ * a₄ # from Primer
|
X = a₄ * a₅ * a₃ * a₄ # from Primer
|
||||||
b₁ = inv(X, A) * a₀ * X # from Primer
|
b₁ = inv(X, A) * a₀ * X # from Primer
|
||||||
@ -85,7 +93,8 @@ function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
|||||||
if mod(j - (i + 1), genus) == 0
|
if mod(j - (i + 1), genus) == 0
|
||||||
return Te_diagonal(λ, ϱ, i)
|
return Te_diagonal(λ, ϱ, i)
|
||||||
else
|
else
|
||||||
return inv(Te_lantern(
|
return inv(
|
||||||
|
Te_lantern(
|
||||||
A,
|
A,
|
||||||
# Our notation: # Primer notation:
|
# Our notation: # Primer notation:
|
||||||
inv(Ta(λ, i + 1), A), # b₀
|
inv(Ta(λ, i + 1), A), # b₀
|
||||||
@ -94,7 +103,9 @@ function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
|||||||
inv(Te_diagonal(λ, ϱ, i), A), # a₃
|
inv(Te_diagonal(λ, ϱ, i), A), # a₃
|
||||||
inv(Tα(λ, i + 1), A), # a₄
|
inv(Tα(λ, i + 1), A), # a₄
|
||||||
inv(Te(λ, ϱ, i + 1, j), A), # a₅
|
inv(Te(λ, ϱ, i + 1, j), A), # a₅
|
||||||
), A)
|
),
|
||||||
|
A,
|
||||||
|
)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -105,7 +116,6 @@ Return the element of `G` which corresponds to shifting generators of the free g
|
|||||||
In the corresponding mapping class group this element acts by rotation of the surface anti-clockwise.
|
In the corresponding mapping class group this element acts by rotation of the surface anti-clockwise.
|
||||||
"""
|
"""
|
||||||
function rotation_element(G::AutomorphismGroup{<:FreeGroup})
|
function rotation_element(G::AutomorphismGroup{<:FreeGroup})
|
||||||
|
|
||||||
A = alphabet(G)
|
A = alphabet(G)
|
||||||
@assert iseven(ngens(object(G)))
|
@assert iseven(ngens(object(G)))
|
||||||
genus = ngens(object(G)) ÷ 2
|
genus = ngens(object(G)) ÷ 2
|
||||||
@ -140,7 +150,10 @@ function rotation_element(λ::ΡΛ, ϱ::ΡΛ)
|
|||||||
Ta(λ, i) *
|
Ta(λ, i) *
|
||||||
inv(Te_diagonal(λ, ϱ, i), A)
|
inv(Te_diagonal(λ, ϱ, i), A)
|
||||||
|
|
||||||
Ta(λ, i) * inv(Ta(λ, j) * Tα(λ, j), A)^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c
|
return Ta(λ, i) *
|
||||||
|
inv(Ta(λ, j) * Tα(λ, j), A)^6 *
|
||||||
|
(Ta(λ, j) * Tα(λ, j) * z)^4 *
|
||||||
|
c
|
||||||
end
|
end
|
||||||
|
|
||||||
τ = (Ta(λ, 1) * Tα(λ, 1))^6 * prod(halftwists)
|
τ = (Ta(λ, 1) * Tα(λ, 1))^6 * prod(halftwists)
|
||||||
@ -148,7 +161,6 @@ function rotation_element(λ::ΡΛ, ϱ::ΡΛ)
|
|||||||
end
|
end
|
||||||
|
|
||||||
function mcg_twists(G::AutomorphismGroup{<:FreeGroup})
|
function mcg_twists(G::AutomorphismGroup{<:FreeGroup})
|
||||||
|
|
||||||
@assert iseven(ngens(object(G)))
|
@assert iseven(ngens(object(G)))
|
||||||
genus = ngens(object(G)) ÷ 2
|
genus = ngens(object(G)) ÷ 2
|
||||||
|
|
||||||
@ -178,7 +190,9 @@ struct SymplecticMappingClass{T,F} <: GSymbol
|
|||||||
f::F
|
f::F
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.:(==)(a::SymplecticMappingClass, b::SymplecticMappingClass) = a.autFn_word == b.autFn_word
|
function Base.:(==)(a::SymplecticMappingClass, b::SymplecticMappingClass)
|
||||||
|
return a.autFn_word == b.autFn_word
|
||||||
|
end
|
||||||
|
|
||||||
Base.hash(a::SymplecticMappingClass, h::UInt) = hash(a.autFn_word, h)
|
Base.hash(a::SymplecticMappingClass, h::UInt) = hash(a.autFn_word, h)
|
||||||
|
|
||||||
@ -188,7 +202,7 @@ function SymplecticMappingClass(
|
|||||||
i::Integer,
|
i::Integer,
|
||||||
j::Integer;
|
j::Integer;
|
||||||
minus = false,
|
minus = false,
|
||||||
inverse=false
|
inverse = false,
|
||||||
)
|
)
|
||||||
@assert i > 0 && j > 0
|
@assert i > 0 && j > 0
|
||||||
id === :A && @assert i ≠ j
|
id === :A && @assert i ≠ j
|
||||||
@ -246,7 +260,7 @@ function Base.show(io::IO, smc::SymplecticMappingClass)
|
|||||||
else
|
else
|
||||||
print(io, smc.id, subscriptify(smc.i), ".", subscriptify(smc.j))
|
print(io, smc.id, subscriptify(smc.i), ".", subscriptify(smc.j))
|
||||||
end
|
end
|
||||||
smc.inv && print(io, "^-1")
|
return smc.inv && print(io, "^-1")
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.inv(m::SymplecticMappingClass)
|
function Base.inv(m::SymplecticMappingClass)
|
||||||
|
@ -20,15 +20,18 @@ function Base.show(io::IO, t::Transvection)
|
|||||||
'λ'
|
'λ'
|
||||||
end
|
end
|
||||||
print(io, id, subscriptify(t.i), '.', subscriptify(t.j))
|
print(io, id, subscriptify(t.i), '.', subscriptify(t.j))
|
||||||
t.inv && print(io, "^-1")
|
return t.inv && print(io, "^-1")
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.inv(t::Transvection) = Transvection(t.id, t.i, t.j, !t.inv)
|
Base.inv(t::Transvection) = Transvection(t.id, t.i, t.j, !t.inv)
|
||||||
|
|
||||||
Base.:(==)(t::Transvection, s::Transvection) =
|
function Base.:(==)(t::Transvection, s::Transvection)
|
||||||
t.id === s.id && t.i == s.i && t.j == s.j && t.inv == s.inv
|
return t.id === s.id && t.i == s.i && t.j == s.j && t.inv == s.inv
|
||||||
|
end
|
||||||
|
|
||||||
Base.hash(t::Transvection, h::UInt) = hash(hash(t.id, hash(t.i)), hash(t.j, hash(t.inv, h)))
|
function Base.hash(t::Transvection, h::UInt)
|
||||||
|
return hash(hash(t.id, hash(t.i)), hash(t.j, hash(t.inv, h)))
|
||||||
|
end
|
||||||
|
|
||||||
Base.@propagate_inbounds @inline function evaluate!(
|
Base.@propagate_inbounds @inline function evaluate!(
|
||||||
v::NTuple{T,N},
|
v::NTuple{T,N},
|
||||||
@ -84,7 +87,7 @@ end
|
|||||||
|
|
||||||
function Base.show(io::IO, p::PermRightAut)
|
function Base.show(io::IO, p::PermRightAut)
|
||||||
print(io, 'σ')
|
print(io, 'σ')
|
||||||
join(io, (subscriptify(Int(i)) for i in p.perm))
|
return join(io, (subscriptify(Int(i)) for i in p.perm))
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.inv(p::PermRightAut) = PermRightAut(invperm(p.perm))
|
Base.inv(p::PermRightAut) = PermRightAut(invperm(p.perm))
|
||||||
@ -92,4 +95,6 @@ Base.inv(p::PermRightAut) = PermRightAut(invperm(p.perm))
|
|||||||
Base.:(==)(p::PermRightAut, q::PermRightAut) = p.perm == q.perm
|
Base.:(==)(p::PermRightAut, q::PermRightAut) = p.perm == q.perm
|
||||||
Base.hash(p::PermRightAut, h::UInt) = hash(p.perm, hash(PermRightAut, h))
|
Base.hash(p::PermRightAut, h::UInt) = hash(p.perm, hash(PermRightAut, h))
|
||||||
|
|
||||||
evaluate!(v::NTuple{T,N}, p::PermRightAut, tmp=nothing) where {T,N} = v[p.perm]
|
function evaluate!(v::NTuple{T,N}, p::PermRightAut, tmp = nothing) where {T,N}
|
||||||
|
return v[p.perm]
|
||||||
|
end
|
||||||
|
@ -1,5 +1,5 @@
|
|||||||
function KnuthBendix.Alphabet(S::AbstractVector{<:GSymbol})
|
function KnuthBendix.Alphabet(S::AbstractVector{<:GSymbol})
|
||||||
S = unique!([S; inv.(S)])
|
S = union(S, inv.(S))
|
||||||
inversions = [findfirst(==(inv(s)), S) for s in S]
|
inversions = [findfirst(==(inv(s)), S) for s in S]
|
||||||
return Alphabet(S, inversions)
|
return Alphabet(S, inversions)
|
||||||
end
|
end
|
||||||
@ -26,7 +26,10 @@ function equality_data(f::AbstractFPGroupElement{<:AutomorphismGroup})
|
|||||||
return imf
|
return imf
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.:(==)(g::A, h::A) where {A<:AbstractFPGroupElement{<:AutomorphismGroup}}
|
function Base.:(==)(
|
||||||
|
g::A,
|
||||||
|
h::A,
|
||||||
|
) where {A<:AbstractFPGroupElement{<:AutomorphismGroup}}
|
||||||
@assert parent(g) === parent(h)
|
@assert parent(g) === parent(h)
|
||||||
|
|
||||||
if _isvalidhash(g) && _isvalidhash(h)
|
if _isvalidhash(g) && _isvalidhash(h)
|
||||||
@ -79,27 +82,41 @@ end
|
|||||||
|
|
||||||
# eye-candy
|
# eye-candy
|
||||||
|
|
||||||
Base.show(io::IO, ::Type{<:FPGroupElement{<:AutomorphismGroup{T}}}) where {T} =
|
function Base.show(
|
||||||
print(io, "Automorphism{$T, …}")
|
io::IO,
|
||||||
|
::Type{<:FPGroupElement{<:AutomorphismGroup{T}}},
|
||||||
|
) where {T}
|
||||||
|
return print(io, "Automorphism{$T, …}")
|
||||||
|
end
|
||||||
|
|
||||||
Base.show(io::IO, A::AutomorphismGroup) = print(io, "automorphism group of ", object(A))
|
function Base.show(io::IO, A::AutomorphismGroup)
|
||||||
|
return print(io, "automorphism group of ", object(A))
|
||||||
|
end
|
||||||
|
|
||||||
function Base.show(io::IO, ::MIME"text/plain", a::AbstractFPGroupElement{<:AutomorphismGroup})
|
function Base.show(
|
||||||
|
io::IO,
|
||||||
|
::MIME"text/plain",
|
||||||
|
a::AbstractFPGroupElement{<:AutomorphismGroup},
|
||||||
|
)
|
||||||
println(io, " ┌ $(a):")
|
println(io, " ┌ $(a):")
|
||||||
d = domain(a)
|
d = domain(a)
|
||||||
im = evaluate(a)
|
im = evaluate(a)
|
||||||
for (x, imx) in zip(d, im[1:end-1])
|
for (x, imx) in zip(d, im[1:end-1])
|
||||||
println(io, " │ $x ↦ $imx")
|
println(io, " │ $x ↦ $imx")
|
||||||
end
|
end
|
||||||
println(io, " └ $(last(d)) ↦ $(last(im))")
|
return println(io, " └ $(last(d)) ↦ $(last(im))")
|
||||||
end
|
end
|
||||||
|
|
||||||
## Automorphism Evaluation
|
## Automorphism Evaluation
|
||||||
|
|
||||||
domain(f::AbstractFPGroupElement{<:AutomorphismGroup}) = deepcopy(parent(f).domain)
|
function domain(f::AbstractFPGroupElement{<:AutomorphismGroup})
|
||||||
|
return deepcopy(parent(f).domain)
|
||||||
|
end
|
||||||
# tuple(gens(object(parent(f)))...)
|
# tuple(gens(object(parent(f)))...)
|
||||||
|
|
||||||
evaluate(f::AbstractFPGroupElement{<:AutomorphismGroup}) = evaluate!(domain(f), f)
|
function evaluate(f::AbstractFPGroupElement{<:AutomorphismGroup})
|
||||||
|
return evaluate!(domain(f), f)
|
||||||
|
end
|
||||||
|
|
||||||
function evaluate!(
|
function evaluate!(
|
||||||
t::NTuple{N,T},
|
t::NTuple{N,T},
|
||||||
@ -113,7 +130,11 @@ function evaluate!(
|
|||||||
return t
|
return t
|
||||||
end
|
end
|
||||||
|
|
||||||
evaluate!(t::NTuple{N,T}, s::GSymbol, tmp=nothing) where {N,T} = throw("you need to implement `evaluate!(::$(typeof(t)), ::$(typeof(s)), ::Alphabet, tmp=one(first(t)))`")
|
function evaluate!(t::NTuple{N,T}, s::GSymbol, tmp = nothing) where {N,T}
|
||||||
|
throw(
|
||||||
|
"you need to implement `evaluate!(::$(typeof(t)), ::$(typeof(s)), ::Alphabet, tmp=one(first(t)))`",
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
# forward evaluate by substitution
|
# forward evaluate by substitution
|
||||||
|
|
||||||
@ -135,13 +156,13 @@ function LettersMap(a::FPGroupElement{<:AutomorphismGroup})
|
|||||||
# (trusting it's a set of generators that define a)
|
# (trusting it's a set of generators that define a)
|
||||||
@assert length(dom) == length(img)
|
@assert length(dom) == length(img)
|
||||||
|
|
||||||
indices_map = Dict(A[A[fl]] => word(im) for (fl, im) in zip(first_letters, img))
|
indices_map =
|
||||||
|
Dict(A[A[fl]] => word(im) for (fl, im) in zip(first_letters, img))
|
||||||
# inverses of generators are dealt lazily in getindex
|
# inverses of generators are dealt lazily in getindex
|
||||||
|
|
||||||
return LettersMap(indices_map, A)
|
return LettersMap(indices_map, A)
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
function Base.getindex(lm::LettersMap, i::Integer)
|
function Base.getindex(lm::LettersMap, i::Integer)
|
||||||
# here i is an index of an alphabet
|
# here i is an index of an alphabet
|
||||||
@boundscheck 1 ≤ i ≤ length(lm.A)
|
@boundscheck 1 ≤ i ≤ length(lm.A)
|
||||||
|
@ -12,18 +12,22 @@ struct DirectPowerElement{GEl,N,Gr<:GroupsCore.Group} <: GroupsCore.GroupElement
|
|||||||
parent::DirectPower{Gr,N,GEl}
|
parent::DirectPower{Gr,N,GEl}
|
||||||
end
|
end
|
||||||
|
|
||||||
DirectPowerElement(
|
function DirectPowerElement(
|
||||||
elts::AbstractVector{<:GroupsCore.GroupElement},
|
elts::AbstractVector{<:GroupsCore.GroupElement},
|
||||||
G::DirectPower,
|
G::DirectPower,
|
||||||
) = DirectPowerElement(ntuple(i -> elts[i], _nfold(G)), G)
|
)
|
||||||
|
return DirectPowerElement(ntuple(i -> elts[i], _nfold(G)), G)
|
||||||
|
end
|
||||||
|
|
||||||
_nfold(::DirectPower{Gr,N}) where {Gr,N} = N
|
_nfold(::DirectPower{Gr,N}) where {Gr,N} = N
|
||||||
|
|
||||||
Base.one(G::DirectPower) =
|
function Base.one(G::DirectPower)
|
||||||
DirectPowerElement(ntuple(_ -> one(G.group), _nfold(G)), G)
|
return DirectPowerElement(ntuple(_ -> one(G.group), _nfold(G)), G)
|
||||||
|
end
|
||||||
|
|
||||||
Base.eltype(::Type{<:DirectPower{Gr,N,GEl}}) where {Gr,N,GEl} =
|
function Base.eltype(::Type{<:DirectPower{Gr,N,GEl}}) where {Gr,N,GEl}
|
||||||
DirectPowerElement{GEl,N,Gr}
|
return DirectPowerElement{GEl,N,Gr}
|
||||||
|
end
|
||||||
|
|
||||||
function Base.iterate(G::DirectPower)
|
function Base.iterate(G::DirectPower)
|
||||||
itr = Iterators.ProductIterator(ntuple(i -> G.group, _nfold(G)))
|
itr = Iterators.ProductIterator(ntuple(i -> G.group, _nfold(G)))
|
||||||
@ -49,8 +53,9 @@ end
|
|||||||
|
|
||||||
Base.size(G::DirectPower) = ntuple(_ -> length(G.group), _nfold(G))
|
Base.size(G::DirectPower) = ntuple(_ -> length(G.group), _nfold(G))
|
||||||
|
|
||||||
GroupsCore.order(::Type{I}, G::DirectPower) where {I<:Integer} =
|
function GroupsCore.order(::Type{I}, G::DirectPower) where {I<:Integer}
|
||||||
convert(I, order(I, G.group)^_nfold(G))
|
return convert(I, order(I, G.group)^_nfold(G))
|
||||||
|
end
|
||||||
|
|
||||||
GroupsCore.ngens(G::DirectPower) = _nfold(G) * ngens(G.group)
|
GroupsCore.ngens(G::DirectPower) = _nfold(G) * ngens(G.group)
|
||||||
|
|
||||||
@ -83,13 +88,18 @@ end
|
|||||||
|
|
||||||
GroupsCore.parent(g::DirectPowerElement) = g.parent
|
GroupsCore.parent(g::DirectPowerElement) = g.parent
|
||||||
|
|
||||||
Base.:(==)(g::DirectPowerElement, h::DirectPowerElement) =
|
function Base.:(==)(g::DirectPowerElement, h::DirectPowerElement)
|
||||||
(parent(g) === parent(h) && g.elts == h.elts)
|
return (parent(g) === parent(h) && g.elts == h.elts)
|
||||||
|
end
|
||||||
|
|
||||||
Base.hash(g::DirectPowerElement, h::UInt) = hash(g.elts, hash(parent(g), h))
|
Base.hash(g::DirectPowerElement, h::UInt) = hash(g.elts, hash(parent(g), h))
|
||||||
|
|
||||||
Base.deepcopy_internal(g::DirectPowerElement, stackdict::IdDict) =
|
function Base.deepcopy_internal(g::DirectPowerElement, stackdict::IdDict)
|
||||||
DirectPowerElement(Base.deepcopy_internal(g.elts, stackdict), parent(g))
|
return DirectPowerElement(
|
||||||
|
Base.deepcopy_internal(g.elts, stackdict),
|
||||||
|
parent(g),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
Base.inv(g::DirectPowerElement) = DirectPowerElement(inv.(g.elts), parent(g))
|
Base.inv(g::DirectPowerElement) = DirectPowerElement(inv.(g.elts), parent(g))
|
||||||
|
|
||||||
@ -98,15 +108,25 @@ function Base.:(*)(g::DirectPowerElement, h::DirectPowerElement)
|
|||||||
return DirectPowerElement(g.elts .* h.elts, parent(g))
|
return DirectPowerElement(g.elts .* h.elts, parent(g))
|
||||||
end
|
end
|
||||||
|
|
||||||
GroupsCore.order(::Type{I}, g::DirectPowerElement) where {I<:Integer} =
|
function GroupsCore.order(::Type{I}, g::DirectPowerElement) where {I<:Integer}
|
||||||
convert(I, reduce(lcm, (order(I, h) for h in g.elts), init=one(I)))
|
return convert(I, reduce(lcm, (order(I, h) for h in g.elts); init = one(I)))
|
||||||
|
end
|
||||||
|
|
||||||
Base.isone(g::DirectPowerElement) = all(isone, g.elts)
|
Base.isone(g::DirectPowerElement) = all(isone, g.elts)
|
||||||
|
|
||||||
function Base.show(io::IO, G::DirectPower)
|
function Base.show(io::IO, G::DirectPower)
|
||||||
n = _nfold(G)
|
n = _nfold(G)
|
||||||
nn = n == 1 ? "1-st" : n == 2 ? "2-nd" : n == 3 ? "3-rd" : "$n-th"
|
nn = n == 1 ? "1-st" : n == 2 ? "2-nd" : n == 3 ? "3-rd" : "$n-th"
|
||||||
print(io, "Direct $(nn) power of $(G.group)")
|
return print(io, "Direct $(nn) power of $(G.group)")
|
||||||
|
end
|
||||||
|
function Base.show(io::IO, g::DirectPowerElement)
|
||||||
|
return print(io, "( ", join(g.elts, ", "), " )")
|
||||||
|
end
|
||||||
|
|
||||||
|
# convienience:
|
||||||
|
Base.@propagate_inbounds function Base.getindex(
|
||||||
|
g::DirectPowerElement,
|
||||||
|
i::Integer,
|
||||||
|
)
|
||||||
|
return g.elts[i]
|
||||||
end
|
end
|
||||||
Base.show(io::IO, g::DirectPowerElement) =
|
|
||||||
print(io, "( ", join(g.elts, ", "), " )")
|
|
||||||
|
@ -14,11 +14,15 @@ end
|
|||||||
|
|
||||||
DirectProductElement(g, h, G::DirectProduct) = DirectProduct((g, h), G)
|
DirectProductElement(g, h, G::DirectProduct) = DirectProduct((g, h), G)
|
||||||
|
|
||||||
Base.one(G::DirectProduct) =
|
function Base.one(G::DirectProduct)
|
||||||
DirectProductElement((one(G.first), one(G.last)), G)
|
return DirectProductElement((one(G.first), one(G.last)), G)
|
||||||
|
end
|
||||||
|
|
||||||
Base.eltype(::Type{<:DirectProduct{Gt,Ht,GEl,HEl}}) where {Gt,Ht,GEl,HEl} =
|
function Base.eltype(
|
||||||
DirectProductElement{GEl,HEl,Gt,Ht}
|
::Type{<:DirectProduct{Gt,Ht,GEl,HEl}},
|
||||||
|
) where {Gt,Ht,GEl,HEl}
|
||||||
|
return DirectProductElement{GEl,HEl,Gt,Ht}
|
||||||
|
end
|
||||||
|
|
||||||
function Base.iterate(G::DirectProduct)
|
function Base.iterate(G::DirectProduct)
|
||||||
itr = Iterators.product(G.first, G.last)
|
itr = Iterators.product(G.first, G.last)
|
||||||
@ -50,15 +54,18 @@ end
|
|||||||
|
|
||||||
Base.size(G::DirectProduct) = (length(G.first), length(G.last))
|
Base.size(G::DirectProduct) = (length(G.first), length(G.last))
|
||||||
|
|
||||||
GroupsCore.order(::Type{I}, G::DirectProduct) where {I<:Integer} =
|
function GroupsCore.order(::Type{I}, G::DirectProduct) where {I<:Integer}
|
||||||
convert(I, order(I, G.first) * order(I, G.last))
|
return convert(I, order(I, G.first) * order(I, G.last))
|
||||||
|
end
|
||||||
|
|
||||||
GroupsCore.ngens(G::DirectProduct) = ngens(G.first) + ngens(G.last)
|
GroupsCore.ngens(G::DirectProduct) = ngens(G.first) + ngens(G.last)
|
||||||
|
|
||||||
function GroupsCore.gens(G::DirectProduct)
|
function GroupsCore.gens(G::DirectProduct)
|
||||||
gens_first = [DirectProductElement((g, one(G.last)), G) for g in gens(G.first)]
|
gens_first =
|
||||||
|
[DirectProductElement((g, one(G.last)), G) for g in gens(G.first)]
|
||||||
|
|
||||||
gens_last = [DirectProductElement((one(G.first), g), G) for g in gens(G.last)]
|
gens_last =
|
||||||
|
[DirectProductElement((one(G.first), g), G) for g in gens(G.last)]
|
||||||
|
|
||||||
return [gens_first; gens_last]
|
return [gens_first; gens_last]
|
||||||
end
|
end
|
||||||
@ -75,28 +82,45 @@ end
|
|||||||
|
|
||||||
GroupsCore.parent(g::DirectProductElement) = g.parent
|
GroupsCore.parent(g::DirectProductElement) = g.parent
|
||||||
|
|
||||||
Base.:(==)(g::DirectProductElement, h::DirectProductElement) =
|
function Base.:(==)(g::DirectProductElement, h::DirectProductElement)
|
||||||
(parent(g) === parent(h) && g.elts == h.elts)
|
return (parent(g) === parent(h) && g.elts == h.elts)
|
||||||
|
end
|
||||||
|
|
||||||
Base.hash(g::DirectProductElement, h::UInt) = hash(g.elts, hash(parent(g), h))
|
Base.hash(g::DirectProductElement, h::UInt) = hash(g.elts, hash(parent(g), h))
|
||||||
|
|
||||||
Base.deepcopy_internal(g::DirectProductElement, stackdict::IdDict) =
|
function Base.deepcopy_internal(g::DirectProductElement, stackdict::IdDict)
|
||||||
DirectProductElement(Base.deepcopy_internal(g.elts, stackdict), parent(g))
|
return DirectProductElement(
|
||||||
|
Base.deepcopy_internal(g.elts, stackdict),
|
||||||
|
parent(g),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
Base.inv(g::DirectProductElement) =
|
function Base.inv(g::DirectProductElement)
|
||||||
DirectProductElement(inv.(g.elts), parent(g))
|
return DirectProductElement(inv.(g.elts), parent(g))
|
||||||
|
end
|
||||||
|
|
||||||
function Base.:(*)(g::DirectProductElement, h::DirectProductElement)
|
function Base.:(*)(g::DirectProductElement, h::DirectProductElement)
|
||||||
@assert parent(g) === parent(h)
|
@assert parent(g) === parent(h)
|
||||||
return DirectProductElement(g.elts .* h.elts, parent(g))
|
return DirectProductElement(g.elts .* h.elts, parent(g))
|
||||||
end
|
end
|
||||||
|
|
||||||
GroupsCore.order(::Type{I}, g::DirectProductElement) where {I<:Integer} =
|
function GroupsCore.order(::Type{I}, g::DirectProductElement) where {I<:Integer}
|
||||||
convert(I, lcm(order(I, first(g.elts)), order(I, last(g.elts))))
|
return convert(I, lcm(order(I, first(g.elts)), order(I, last(g.elts))))
|
||||||
|
end
|
||||||
|
|
||||||
Base.isone(g::DirectProductElement) = all(isone, g.elts)
|
Base.isone(g::DirectProductElement) = all(isone, g.elts)
|
||||||
|
|
||||||
Base.show(io::IO, G::DirectProduct) =
|
function Base.show(io::IO, G::DirectProduct)
|
||||||
print(io, "Direct product of $(G.first) and $(G.last)")
|
return print(io, "Direct product of $(G.first) and $(G.last)")
|
||||||
Base.show(io::IO, g::DirectProductElement) =
|
end
|
||||||
print(io, "( $(join(g.elts, ",")) )")
|
function Base.show(io::IO, g::DirectProductElement)
|
||||||
|
return print(io, "( $(join(g.elts, ",")) )")
|
||||||
|
end
|
||||||
|
|
||||||
|
# convienience:
|
||||||
|
Base.@propagate_inbounds function Base.getindex(
|
||||||
|
g::DirectProductElement,
|
||||||
|
i::Integer,
|
||||||
|
)
|
||||||
|
return g.elts[i]
|
||||||
|
end
|
||||||
|
@ -1,4 +1,5 @@
|
|||||||
import PermutationGroups: AbstractPermutationGroup, AbstractPerm, degree, SymmetricGroup
|
import PermutationGroups:
|
||||||
|
AbstractPermutationGroup, AbstractPerm, degree, SymmetricGroup
|
||||||
|
|
||||||
"""
|
"""
|
||||||
WreathProduct(G::Group, P::AbstractPermutationGroup) <: Group
|
WreathProduct(G::Group, P::AbstractPermutationGroup) <: Group
|
||||||
@ -38,14 +39,15 @@ struct WreathProductElement{
|
|||||||
p::AbstractPerm,
|
p::AbstractPerm,
|
||||||
W::WreathProduct,
|
W::WreathProduct,
|
||||||
)
|
)
|
||||||
new{typeof(n),typeof(p),typeof(W)}(n, p, W)
|
return new{typeof(n),typeof(p),typeof(W)}(n, p, W)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.one(W::WreathProduct) = WreathProductElement(one(W.N), one(W.P), W)
|
Base.one(W::WreathProduct) = WreathProductElement(one(W.N), one(W.P), W)
|
||||||
|
|
||||||
Base.eltype(::Type{<:WreathProduct{DP,PGr}}) where {DP,PGr} =
|
function Base.eltype(::Type{<:WreathProduct{DP,PGr}}) where {DP,PGr}
|
||||||
WreathProductElement{eltype(DP),eltype(PGr),WreathProduct{DP,PGr}}
|
return WreathProductElement{eltype(DP),eltype(PGr),WreathProduct{DP,PGr}}
|
||||||
|
end
|
||||||
|
|
||||||
function Base.iterate(G::WreathProduct)
|
function Base.iterate(G::WreathProduct)
|
||||||
itr = Iterators.product(G.N, G.P)
|
itr = Iterators.product(G.N, G.P)
|
||||||
@ -78,8 +80,9 @@ end
|
|||||||
|
|
||||||
Base.size(G::WreathProduct) = (length(G.N), length(G.P))
|
Base.size(G::WreathProduct) = (length(G.N), length(G.P))
|
||||||
|
|
||||||
GroupsCore.order(::Type{I}, G::WreathProduct) where {I<:Integer} =
|
function GroupsCore.order(::Type{I}, G::WreathProduct) where {I<:Integer}
|
||||||
convert(I, order(I, G.N) * order(I, G.P))
|
return convert(I, order(I, G.N) * order(I, G.P))
|
||||||
|
end
|
||||||
|
|
||||||
function GroupsCore.gens(G::WreathProduct)
|
function GroupsCore.gens(G::WreathProduct)
|
||||||
N_gens = [WreathProductElement(n, one(G.P), G) for n in gens(G.N)]
|
N_gens = [WreathProductElement(n, one(G.P), G) for n in gens(G.N)]
|
||||||
@ -93,18 +96,19 @@ function Base.rand(
|
|||||||
rng::Random.AbstractRNG,
|
rng::Random.AbstractRNG,
|
||||||
rs::Random.SamplerTrivial{<:WreathProduct},
|
rs::Random.SamplerTrivial{<:WreathProduct},
|
||||||
)
|
)
|
||||||
|
|
||||||
G = rs[]
|
G = rs[]
|
||||||
return WreathProductElement(rand(rng, G.N), rand(rng, G.P), G)
|
return WreathProductElement(rand(rng, G.N), rand(rng, G.P), G)
|
||||||
end
|
end
|
||||||
|
|
||||||
GroupsCore.parent(g::WreathProductElement) = g.parent
|
GroupsCore.parent(g::WreathProductElement) = g.parent
|
||||||
|
|
||||||
Base.:(==)(g::WreathProductElement, h::WreathProductElement) =
|
function Base.:(==)(g::WreathProductElement, h::WreathProductElement)
|
||||||
parent(g) === parent(h) && g.n == h.n && g.p == h.p
|
return parent(g) === parent(h) && g.n == h.n && g.p == h.p
|
||||||
|
end
|
||||||
|
|
||||||
Base.hash(g::WreathProductElement, h::UInt) =
|
function Base.hash(g::WreathProductElement, h::UInt)
|
||||||
hash(g.n, hash(g.p, hash(g.parent, h)))
|
return hash(g.n, hash(g.p, hash(g.parent, h)))
|
||||||
|
end
|
||||||
|
|
||||||
function Base.deepcopy_internal(g::WreathProductElement, stackdict::IdDict)
|
function Base.deepcopy_internal(g::WreathProductElement, stackdict::IdDict)
|
||||||
return WreathProductElement(
|
return WreathProductElement(
|
||||||
@ -114,8 +118,9 @@ function Base.deepcopy_internal(g::WreathProductElement, stackdict::IdDict)
|
|||||||
)
|
)
|
||||||
end
|
end
|
||||||
|
|
||||||
_act(p::AbstractPerm, n::DirectPowerElement) =
|
function _act(p::AbstractPerm, n::DirectPowerElement)
|
||||||
DirectPowerElement(n.elts^p, parent(n))
|
return DirectPowerElement(n.elts^p, parent(n))
|
||||||
|
end
|
||||||
|
|
||||||
function Base.inv(g::WreathProductElement)
|
function Base.inv(g::WreathProductElement)
|
||||||
pinv = inv(g.p)
|
pinv = inv(g.p)
|
||||||
@ -129,8 +134,9 @@ end
|
|||||||
|
|
||||||
Base.isone(g::WreathProductElement) = isone(g.n) && isone(g.p)
|
Base.isone(g::WreathProductElement) = isone(g.n) && isone(g.p)
|
||||||
|
|
||||||
Base.show(io::IO, G::WreathProduct) =
|
function Base.show(io::IO, G::WreathProduct)
|
||||||
print(io, "Wreath product of $(G.N.group) by $(G.P)")
|
return print(io, "Wreath product of $(G.N.group) by $(G.P)")
|
||||||
|
end
|
||||||
Base.show(io::IO, g::WreathProductElement) = print(io, "( $(g.n)≀$(g.p) )")
|
Base.show(io::IO, g::WreathProductElement) = print(io, "( $(g.n)≀$(g.p) )")
|
||||||
|
|
||||||
Base.copy(g::WreathProductElement) = WreathProductElement(g.n, g.p, parent(g))
|
Base.copy(g::WreathProductElement) = WreathProductElement(g.n, g.p, parent(g))
|
||||||
|
@ -20,8 +20,12 @@ _isvalidhash(g::AbstractFPGroupElement) = bitget(g.savedhash, 1)
|
|||||||
_setnormalform(h::UInt, v::Bool) = bitset(h, v, 0)
|
_setnormalform(h::UInt, v::Bool) = bitset(h, v, 0)
|
||||||
_setvalidhash(h::UInt, v::Bool) = bitset(h, v, 1)
|
_setvalidhash(h::UInt, v::Bool) = bitset(h, v, 1)
|
||||||
|
|
||||||
_setnormalform!(g::AbstractFPGroupElement, v::Bool) = g.savedhash = _setnormalform(g.savedhash, v)
|
function _setnormalform!(g::AbstractFPGroupElement, v::Bool)
|
||||||
_setvalidhash!(g::AbstractFPGroupElement, v::Bool) = g.savedhash = _setvalidhash(g.savedhash, v)
|
return g.savedhash = _setnormalform(g.savedhash, v)
|
||||||
|
end
|
||||||
|
function _setvalidhash!(g::AbstractFPGroupElement, v::Bool)
|
||||||
|
return g.savedhash = _setvalidhash(g.savedhash, v)
|
||||||
|
end
|
||||||
|
|
||||||
# To update hash use this internal method, possibly only after computing the
|
# To update hash use this internal method, possibly only after computing the
|
||||||
# normal form of `g`:
|
# normal form of `g`:
|
||||||
|
@ -67,11 +67,13 @@ struct Homomorphism{Gr1,Gr2,I,W}
|
|||||||
f,
|
f,
|
||||||
source::AbstractFPGroup,
|
source::AbstractFPGroup,
|
||||||
target::AbstractFPGroup;
|
target::AbstractFPGroup;
|
||||||
check=true
|
check = true,
|
||||||
)
|
)
|
||||||
A = alphabet(source)
|
A = alphabet(source)
|
||||||
dct = Dict(i => convert(word_type(target), f(i, source, target))
|
dct = Dict(
|
||||||
for i in 1:length(A))
|
i => convert(word_type(target), f(i, source, target)) for
|
||||||
|
i in 1:length(A)
|
||||||
|
)
|
||||||
I = eltype(word_type(source))
|
I = eltype(word_type(source))
|
||||||
W = word_type(target)
|
W = word_type(target)
|
||||||
hom = new{typeof(source),typeof(target),I,W}(dct, source, target)
|
hom = new{typeof(source),typeof(target),I,W}(dct, source, target)
|
||||||
@ -79,7 +81,6 @@ struct Homomorphism{Gr1,Gr2,I,W}
|
|||||||
if check
|
if check
|
||||||
@assert hom(one(source)) == one(target)
|
@assert hom(one(source)) == one(target)
|
||||||
for x in gens(source)
|
for x in gens(source)
|
||||||
|
|
||||||
@assert hom(x^-1) == hom(x)^-1
|
@assert hom(x^-1) == hom(x)^-1
|
||||||
|
|
||||||
for y in gens(source)
|
for y in gens(source)
|
||||||
@ -111,4 +112,6 @@ function (h::Homomorphism)(g::AbstractFPGroupElement)
|
|||||||
return h.target(w)
|
return h.target(w)
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.show(io::IO, h::Homomorphism) = print(io, "Homomorphism\n from : $(h.source)\n to : $(h.target)")
|
function Base.show(io::IO, h::Homomorphism)
|
||||||
|
return print(io, "Homomorphism\n from : $(h.source)\n to : $(h.target)")
|
||||||
|
end
|
||||||
|
@ -9,10 +9,11 @@ import GroupsCore.Random # GroupsCore rand
|
|||||||
using ..Groups
|
using ..Groups
|
||||||
using Groups.KnuthBendix
|
using Groups.KnuthBendix
|
||||||
|
|
||||||
export SpecialLinearGroup, SymplecticGroup
|
export MatrixGroup, SpecialLinearGroup, SymplecticGroup
|
||||||
|
|
||||||
include("abstract.jl")
|
include("abstract.jl")
|
||||||
|
|
||||||
|
include("matrix_group.jl")
|
||||||
include("SLn.jl")
|
include("SLn.jl")
|
||||||
include("Spn.jl")
|
include("Spn.jl")
|
||||||
|
|
||||||
|
@ -1,42 +1,35 @@
|
|||||||
include("eltary_matrices.jl")
|
include("eltary_matrices.jl")
|
||||||
|
|
||||||
struct SpecialLinearGroup{N,T,R,A,S} <: MatrixGroup{N,T}
|
struct SpecialLinearGroup{N,T,R,S} <: AbstractMatrixGroup{N,T}
|
||||||
base_ring::R
|
base_ring::R
|
||||||
alphabet::A
|
alphabet::Alphabet{S}
|
||||||
gens::S
|
gens::Vector{S}
|
||||||
|
|
||||||
function SpecialLinearGroup{N}(base_ring) where {N}
|
function SpecialLinearGroup{N}(base_ring) where {N}
|
||||||
S = [ElementaryMatrix{N}(i, j, one(base_ring)) for i in 1:N for j in 1:N if i ≠ j]
|
S = [
|
||||||
|
ElementaryMatrix{N}(i, j, one(base_ring)) for i in 1:N for
|
||||||
|
j in 1:N if i ≠ j
|
||||||
|
]
|
||||||
alphabet = Alphabet(S)
|
alphabet = Alphabet(S)
|
||||||
|
|
||||||
return new{
|
T = eltype(base_ring)
|
||||||
N,
|
R = typeof(base_ring)
|
||||||
eltype(base_ring),
|
St = eltype(S)
|
||||||
typeof(base_ring),
|
|
||||||
typeof(alphabet),
|
return new{N,T,R,St}(base_ring, alphabet, S)
|
||||||
typeof(S)
|
|
||||||
}(base_ring, alphabet, S)
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
GroupsCore.ngens(SL::SpecialLinearGroup{N}) where {N} = N^2 - N
|
GroupsCore.ngens(SL::SpecialLinearGroup) = length(SL.gens)
|
||||||
|
|
||||||
Base.show(io::IO, SL::SpecialLinearGroup{N,T}) where {N,T} =
|
function Base.show(io::IO, ::SpecialLinearGroup{N,T}) where {N,T}
|
||||||
print(io, "special linear group of $N×$N matrices over $T")
|
return print(io, "SL{$N,$T}")
|
||||||
|
end
|
||||||
|
|
||||||
function Base.show(
|
function Base.show(
|
||||||
io::IO,
|
io::IO,
|
||||||
::MIME"text/plain",
|
::MIME"text/plain",
|
||||||
sl::Groups.AbstractFPGroupElement{<:SpecialLinearGroup{N}}
|
SL::SpecialLinearGroup{N,T},
|
||||||
) where {N}
|
) where {N,T}
|
||||||
|
return print(io, "special linear group of $N×$N matrices over $T")
|
||||||
Groups.normalform!(sl)
|
|
||||||
|
|
||||||
print(io, "SL{$N,$(eltype(sl))} matrix: ")
|
|
||||||
KnuthBendix.print_repr(io, word(sl), alphabet(sl))
|
|
||||||
println(io)
|
|
||||||
Base.print_array(io, matrix_repr(sl))
|
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.show(io::IO, sl::Groups.AbstractFPGroupElement{<:SpecialLinearGroup}) =
|
|
||||||
KnuthBendix.print_repr(io, word(sl), alphabet(sl))
|
|
||||||
|
@ -1,49 +1,44 @@
|
|||||||
include("eltary_symplectic.jl")
|
include("eltary_symplectic.jl")
|
||||||
|
|
||||||
struct SymplecticGroup{N,T,R,A,S} <: MatrixGroup{N,T}
|
struct SymplecticGroup{N,T,R,S} <: AbstractMatrixGroup{N,T}
|
||||||
base_ring::R
|
base_ring::R
|
||||||
alphabet::A
|
alphabet::Alphabet{S}
|
||||||
gens::S
|
gens::Vector{S}
|
||||||
|
|
||||||
function SymplecticGroup{N}(base_ring) where {N}
|
function SymplecticGroup{N}(base_ring) where {N}
|
||||||
S = symplectic_gens(N, eltype(base_ring))
|
S = symplectic_gens(N, eltype(base_ring))
|
||||||
alphabet = Alphabet(S)
|
alphabet = Alphabet(S)
|
||||||
|
|
||||||
return new{
|
T = eltype(base_ring)
|
||||||
N,
|
R = typeof(base_ring)
|
||||||
eltype(base_ring),
|
St = eltype(S)
|
||||||
typeof(base_ring),
|
|
||||||
typeof(alphabet),
|
return new{N,T,R,St}(base_ring, alphabet, S)
|
||||||
typeof(S)
|
|
||||||
}(base_ring, alphabet, S)
|
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
GroupsCore.ngens(Sp::SymplecticGroup) = length(Sp.gens)
|
GroupsCore.ngens(Sp::SymplecticGroup) = length(Sp.gens)
|
||||||
|
|
||||||
Base.show(io::IO, ::SymplecticGroup{N}) where {N} = print(io, "group of $N×$N symplectic matrices")
|
Base.show(io::IO, ::SymplecticGroup{N,T}) where {N,T} = print(io, "Sp{$N,$T}")
|
||||||
|
|
||||||
function Base.show(
|
function Base.show(io::IO, ::MIME"text/plain", ::SymplecticGroup{N}) where {N}
|
||||||
io::IO,
|
return print(io, "group of $N×$N symplectic matrices")
|
||||||
::MIME"text/plain",
|
|
||||||
sp::Groups.AbstractFPGroupElement{<:SymplecticGroup{N}}
|
|
||||||
) where {N}
|
|
||||||
Groups.normalform!(sp)
|
|
||||||
print(io, "$N×$N symplectic matrix: ")
|
|
||||||
KnuthBendix.print_repr(io, word(sp), alphabet(sp))
|
|
||||||
println(io)
|
|
||||||
Base.print_array(io, matrix_repr(sp))
|
|
||||||
end
|
end
|
||||||
|
|
||||||
_offdiag_idcs(n) = ((i, j) for i in 1:n for j in 1:n if i ≠ j)
|
|
||||||
|
|
||||||
function symplectic_gens(N, T = Int8)
|
function symplectic_gens(N, T = Int8)
|
||||||
iseven(N) || throw(ArgumentError("N needs to be even!"))
|
iseven(N) || throw(ArgumentError("N needs to be even!"))
|
||||||
n = N ÷ 2
|
n = N ÷ 2
|
||||||
|
|
||||||
a_ijs = [ElementarySymplectic{N}(:A, i, j, one(T)) for (i, j) in _offdiag_idcs(n)]
|
_offdiag_idcs(n) = ((i, j) for i in 1:n for j in 1:n if i ≠ j)
|
||||||
|
|
||||||
|
a_ijs = [
|
||||||
|
ElementarySymplectic{N}(:A, i, j, one(T)) for (i, j) in _offdiag_idcs(n)
|
||||||
|
]
|
||||||
b_is = [ElementarySymplectic{N}(:B, n + i, i, one(T)) for i in 1:n]
|
b_is = [ElementarySymplectic{N}(:B, n + i, i, one(T)) for i in 1:n]
|
||||||
c_ijs = [ElementarySymplectic{N}(:B, n + i, j, one(T)) for (i, j) in _offdiag_idcs(n)]
|
c_ijs = [
|
||||||
|
ElementarySymplectic{N}(:B, n + i, j, one(T)) for
|
||||||
|
(i, j) in _offdiag_idcs(n)
|
||||||
|
]
|
||||||
|
|
||||||
S = [a_ijs; b_is; c_ijs]
|
S = [a_ijs; b_is; c_ijs]
|
||||||
|
|
||||||
@ -60,11 +55,16 @@ function _std_symplectic_form(m::AbstractMatrix)
|
|||||||
n = r ÷ 2
|
n = r ÷ 2
|
||||||
𝕆 = zeros(eltype(m), n, n)
|
𝕆 = zeros(eltype(m), n, n)
|
||||||
𝕀 = one(eltype(m)) * LinearAlgebra.I
|
𝕀 = one(eltype(m)) * LinearAlgebra.I
|
||||||
Ω = [𝕆 -𝕀
|
Ω = [
|
||||||
𝕀 𝕆]
|
𝕆 -𝕀
|
||||||
|
𝕀 𝕆
|
||||||
|
]
|
||||||
return Ω
|
return Ω
|
||||||
end
|
end
|
||||||
|
|
||||||
function issymplectic(mat::M, Ω=_std_symplectic_form(mat)) where {M<:AbstractMatrix}
|
function issymplectic(
|
||||||
|
mat::M,
|
||||||
|
Ω = _std_symplectic_form(mat),
|
||||||
|
) where {M<:AbstractMatrix}
|
||||||
return Ω == transpose(mat) * Ω * mat
|
return Ω == transpose(mat) * Ω * mat
|
||||||
end
|
end
|
||||||
|
@ -1,40 +1,89 @@
|
|||||||
abstract type MatrixGroup{N,T} <: Groups.AbstractFPGroup end
|
abstract type AbstractMatrixGroup{N,T} <: Groups.AbstractFPGroup end
|
||||||
const MatrixGroupElement{N,T} = Groups.AbstractFPGroupElement{<:MatrixGroup{N,T}}
|
const MatrixGroupElement{N,T} =
|
||||||
|
Groups.AbstractFPGroupElement{<:AbstractMatrixGroup{N,T}}
|
||||||
|
|
||||||
Base.isone(g::MatrixGroupElement{N,T}) where {N,T} =
|
function Base.isone(g::MatrixGroupElement{N,T}) where {N,T}
|
||||||
isone(word(g)) || matrix_repr(g) == LinearAlgebra.I
|
return isone(word(g)) || isone(matrix(g))
|
||||||
|
|
||||||
function Base.:(==)(m1::M1, m2::M2) where {M1<:MatrixGroupElement,M2<:MatrixGroupElement}
|
|
||||||
parent(m1) === parent(m2) || return false
|
|
||||||
word(m1) == word(m2) && return true
|
|
||||||
return matrix_repr(m1) == matrix_repr(m2)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.size(m::MatrixGroupElement{N}) where {N} = (N, N)
|
function Base.:(==)(
|
||||||
Base.eltype(m::MatrixGroupElement{N,T}) where {N,T} = T
|
m1::M1,
|
||||||
|
m2::M2,
|
||||||
|
) where {M1<:MatrixGroupElement,M2<:MatrixGroupElement}
|
||||||
|
parent(m1) === parent(m2) || return false
|
||||||
|
word(m1) == word(m2) && return true
|
||||||
|
return matrix(m1) == matrix(m2)
|
||||||
|
end
|
||||||
|
|
||||||
|
Base.size(::MatrixGroupElement{N}) where {N} = (N, N)
|
||||||
|
Base.size(::MatrixGroupElement{N}, d) where {N} = ifelse(d::Integer <= 2, N, 1)
|
||||||
|
Base.eltype(::MatrixGroupElement{N,T}) where {N,T} = T
|
||||||
|
|
||||||
# three structural assumptions about matrix groups
|
# three structural assumptions about matrix groups
|
||||||
Groups.word(sl::MatrixGroupElement) = sl.word
|
Groups.word(m::MatrixGroupElement) = m.word
|
||||||
Base.parent(sl::MatrixGroupElement) = sl.parent
|
Base.parent(m::MatrixGroupElement) = m.parent
|
||||||
Groups.alphabet(M::MatrixGroup) = M.alphabet
|
Groups.alphabet(M::AbstractMatrixGroup) = M.alphabet
|
||||||
Groups.rewriting(M::MatrixGroup) = alphabet(M)
|
Groups.rewriting(M::AbstractMatrixGroup) = alphabet(M)
|
||||||
|
|
||||||
Base.hash(sl::MatrixGroupElement, h::UInt) =
|
Base.hash(m::MatrixGroupElement, h::UInt) = hash(matrix(m), hash(parent(m), h))
|
||||||
hash(matrix_repr(sl), hash(parent(sl), h))
|
|
||||||
|
|
||||||
function matrix_repr(m::MatrixGroupElement{N,T}) where {N,T}
|
function matrix(m::MatrixGroupElement{N,T}) where {N,T}
|
||||||
if isone(word(m))
|
if isone(word(m))
|
||||||
return StaticArrays.SMatrix{N,N,T}(LinearAlgebra.I)
|
return StaticArrays.SMatrix{N,N,T}(LinearAlgebra.I)
|
||||||
end
|
end
|
||||||
A = alphabet(parent(m))
|
A = alphabet(parent(m))
|
||||||
return prod(matrix_repr(A[l]) for l in word(m))
|
return prod(matrix(A[l]) for l in word(m))
|
||||||
end
|
end
|
||||||
|
|
||||||
|
function Base.convert(
|
||||||
|
::Type{M},
|
||||||
|
m::MatrixGroupElement,
|
||||||
|
) where {M<:AbstractMatrix}
|
||||||
|
return convert(M, matrix(m))
|
||||||
|
end
|
||||||
|
(M::Type{<:AbstractMatrix})(m::MatrixGroupElement) = convert(M, m)
|
||||||
|
|
||||||
function Base.rand(
|
function Base.rand(
|
||||||
rng::Random.AbstractRNG,
|
rng::Random.AbstractRNG,
|
||||||
rs::Random.SamplerTrivial{<:MatrixGroup},
|
rs::Random.SamplerTrivial{<:AbstractMatrixGroup},
|
||||||
)
|
)
|
||||||
Mgroup = rs[]
|
Mgroup = rs[]
|
||||||
S = gens(Mgroup)
|
S = gens(Mgroup)
|
||||||
return prod(g -> rand(Bool) ? g : inv(g), rand(S, rand(1:30)))
|
return prod(
|
||||||
|
g -> rand(rng, Bool) ? g : inv(g),
|
||||||
|
rand(rng, S, rand(rng, 1:30)),
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(io::IO, M::AbstractMatrixGroup)
|
||||||
|
g = gens(M, 1)
|
||||||
|
N = size(g, 1)
|
||||||
|
return print(io, "H ⩽ GL{$N,$(eltype(g))}")
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(io::IO, ::MIME"text/plain", M::AbstractMatrixGroup)
|
||||||
|
N = size(gens(M, 1), 1)
|
||||||
|
ng = GroupsCore.ngens(M)
|
||||||
|
return print(
|
||||||
|
io,
|
||||||
|
"subgroup of $N×$N invertible matrices with $(ng) generators",
|
||||||
|
)
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(
|
||||||
|
io::IO,
|
||||||
|
mat::Groups.AbstractFPGroupElement{<:AbstractMatrixGroup},
|
||||||
|
)
|
||||||
|
return KnuthBendix.print_repr(io, word(mat), alphabet(mat))
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(
|
||||||
|
io::IO,
|
||||||
|
::MIME"text/plain",
|
||||||
|
mat::Groups.AbstractFPGroupElement{<:AbstractMatrixGroup{N}},
|
||||||
|
) where {N}
|
||||||
|
Groups.normalform!(mat)
|
||||||
|
KnuthBendix.print_repr(io, word(mat), alphabet(mat))
|
||||||
|
println(io, " ∈ ", parent(mat))
|
||||||
|
return Base.print_array(io, matrix(mat))
|
||||||
end
|
end
|
||||||
|
@ -2,25 +2,29 @@ struct ElementaryMatrix{N,T} <: Groups.GSymbol
|
|||||||
i::Int
|
i::Int
|
||||||
j::Int
|
j::Int
|
||||||
val::T
|
val::T
|
||||||
ElementaryMatrix{N}(i, j, val=1) where {N} =
|
function ElementaryMatrix{N}(i, j, val = 1) where {N}
|
||||||
(@assert i ≠ j; new{N,typeof(val)}(i, j, val))
|
return (@assert i ≠ j; new{N,typeof(val)}(i, j, val))
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.show(io::IO, e::ElementaryMatrix)
|
function Base.show(io::IO, e::ElementaryMatrix)
|
||||||
print(io, 'E', Groups.subscriptify(e.i), Groups.subscriptify(e.j))
|
print(io, 'E', Groups.subscriptify(e.i), Groups.subscriptify(e.j))
|
||||||
!isone(e.val) && print(io, "^$(e.val)")
|
return !isone(e.val) && print(io, "^$(e.val)")
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where {N} =
|
function Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where {N}
|
||||||
e.i == f.i && e.j == f.j && e.val == f.val
|
return e.i == f.i && e.j == f.j && e.val == f.val
|
||||||
|
end
|
||||||
|
|
||||||
Base.hash(e::ElementaryMatrix, h::UInt) =
|
function Base.hash(e::ElementaryMatrix, h::UInt)
|
||||||
hash(typeof(e), hash((e.i, e.j, e.val), h))
|
return hash(typeof(e), hash((e.i, e.j, e.val), h))
|
||||||
|
end
|
||||||
|
|
||||||
Base.inv(e::ElementaryMatrix{N}) where {N} =
|
function Base.inv(e::ElementaryMatrix{N}) where {N}
|
||||||
ElementaryMatrix{N}(e.i, e.j, -e.val)
|
return ElementaryMatrix{N}(e.i, e.j, -e.val)
|
||||||
|
end
|
||||||
|
|
||||||
function matrix_repr(e::ElementaryMatrix{N,T}) where {N,T}
|
function matrix(e::ElementaryMatrix{N,T}) where {N,T}
|
||||||
m = StaticArrays.MMatrix{N,N,T}(LinearAlgebra.I)
|
m = StaticArrays.MMatrix{N,N,T}(LinearAlgebra.I)
|
||||||
m[e.i, e.j] = e.val
|
m[e.i, e.j] = e.val
|
||||||
x = StaticArrays.SMatrix{N,N}(m)
|
x = StaticArrays.SMatrix{N,N}(m)
|
||||||
|
@ -3,7 +3,12 @@ struct ElementarySymplectic{N,T} <: Groups.GSymbol
|
|||||||
i::Int
|
i::Int
|
||||||
j::Int
|
j::Int
|
||||||
val::T
|
val::T
|
||||||
function ElementarySymplectic{N}(s::Symbol, i::Integer, j::Integer, val=1) where {N}
|
function ElementarySymplectic{N}(
|
||||||
|
s::Symbol,
|
||||||
|
i::Integer,
|
||||||
|
j::Integer,
|
||||||
|
val = 1,
|
||||||
|
) where {N}
|
||||||
@assert s ∈ (:A, :B)
|
@assert s ∈ (:A, :B)
|
||||||
@assert iseven(N)
|
@assert iseven(N)
|
||||||
n = N ÷ 2
|
n = N ÷ 2
|
||||||
@ -19,7 +24,7 @@ end
|
|||||||
function Base.show(io::IO, s::ElementarySymplectic)
|
function Base.show(io::IO, s::ElementarySymplectic)
|
||||||
i, j = Groups.subscriptify(s.i), Groups.subscriptify(s.j)
|
i, j = Groups.subscriptify(s.i), Groups.subscriptify(s.j)
|
||||||
print(io, s.symbol, i, j)
|
print(io, s.symbol, i, j)
|
||||||
!isone(s.val) && print(io, "^$(s.val)")
|
return !isone(s.val) && print(io, "^$(s.val)")
|
||||||
end
|
end
|
||||||
|
|
||||||
_ind(s::ElementarySymplectic{N}) where {N} = (s.i, s.j)
|
_ind(s::ElementarySymplectic{N}) where {N} = (s.i, s.j)
|
||||||
@ -41,23 +46,29 @@ function _dual_ind(N_half, i, j)
|
|||||||
return i, j
|
return i, j
|
||||||
end
|
end
|
||||||
|
|
||||||
function Base.:(==)(s::ElementarySymplectic{N}, t::ElementarySymplectic{M}) where {N,M}
|
function Base.:(==)(
|
||||||
|
s::ElementarySymplectic{N},
|
||||||
|
t::ElementarySymplectic{M},
|
||||||
|
) where {N,M}
|
||||||
N == M || return false
|
N == M || return false
|
||||||
s.symbol == t.symbol || return false
|
s.symbol == t.symbol || return false
|
||||||
s.val == t.val || return false
|
s.val == t.val || return false
|
||||||
return _ind(t) == _ind(s) || _ind(t) == _dual_ind(s)
|
return _ind(t) == _ind(s) || _ind(t) == _dual_ind(s)
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.hash(s::ElementarySymplectic, h::UInt) =
|
function Base.hash(s::ElementarySymplectic, h::UInt)
|
||||||
hash(Set([_ind(s); _dual_ind(s)]), hash(s.symbol, hash(s.val, h)))
|
return hash(Set([_ind(s); _dual_ind(s)]), hash(s.symbol, hash(s.val, h)))
|
||||||
|
end
|
||||||
|
|
||||||
LinearAlgebra.transpose(s::ElementarySymplectic{N}) where {N} =
|
function LinearAlgebra.transpose(s::ElementarySymplectic{N}) where {N}
|
||||||
ElementarySymplectic{N}(s.symbol, s.j, s.i, s.val)
|
return ElementarySymplectic{N}(s.symbol, s.j, s.i, s.val)
|
||||||
|
end
|
||||||
|
|
||||||
Base.inv(s::ElementarySymplectic{N}) where {N} =
|
function Base.inv(s::ElementarySymplectic{N}) where {N}
|
||||||
ElementarySymplectic{N}(s.symbol, s.i, s.j, -s.val)
|
return ElementarySymplectic{N}(s.symbol, s.i, s.j, -s.val)
|
||||||
|
end
|
||||||
|
|
||||||
function matrix_repr(s::ElementarySymplectic{N,T}) where {N,T}
|
function matrix(s::ElementarySymplectic{N,T}) where {N,T}
|
||||||
@assert iseven(N)
|
@assert iseven(N)
|
||||||
n = div(N, 2)
|
n = div(N, 2)
|
||||||
m = StaticArrays.MMatrix{N,N,T}(LinearAlgebra.I)
|
m = StaticArrays.MMatrix{N,N,T}(LinearAlgebra.I)
|
||||||
|
36
src/matrix_groups/matrix_generators.jl
Normal file
36
src/matrix_groups/matrix_generators.jl
Normal file
@ -0,0 +1,36 @@
|
|||||||
|
struct MatrixElt{N,T,N²} <: Groups.GSymbol
|
||||||
|
id::Symbol
|
||||||
|
inv::Bool
|
||||||
|
mat::StaticArrays.SMatrix{N,N,T,N²}
|
||||||
|
|
||||||
|
function MatrixElt{N,T}(
|
||||||
|
id::Symbol,
|
||||||
|
mat::AbstractMatrix,
|
||||||
|
inv::Bool = false,
|
||||||
|
) where {N,T}
|
||||||
|
n = LinearAlgebra.checksquare(mat)
|
||||||
|
@assert N == n
|
||||||
|
@assert !iszero(LinearAlgebra.det(mat))
|
||||||
|
return new{N,T,N^2}(id, inv, mat)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function MatrixElt{N}(
|
||||||
|
id::Symbol,
|
||||||
|
mat::AbstractMatrix,
|
||||||
|
inv::Bool = false,
|
||||||
|
) where {N}
|
||||||
|
return MatrixElt{N,eltype(mat)}(id, mat, inv)
|
||||||
|
end
|
||||||
|
|
||||||
|
Base.show(io::IO, m::MatrixElt) = print(io, m.id, m.inv ? "⁻¹" : "")
|
||||||
|
|
||||||
|
Base.:(==)(m::MatrixElt, n::MatrixElt) = m.mat == n.mat
|
||||||
|
|
||||||
|
Base.hash(m::MatrixElt, h::UInt) = hash(m.mat, hash(typeof(m), h))
|
||||||
|
|
||||||
|
function Base.inv(m::MatrixElt{N,T}) where {N,T}
|
||||||
|
return MatrixElt{N,T}(m.id, round.(T, inv(m.mat)), !m.inv)
|
||||||
|
end
|
||||||
|
|
||||||
|
matrix(m::MatrixElt) = m.mat
|
25
src/matrix_groups/matrix_group.jl
Normal file
25
src/matrix_groups/matrix_group.jl
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
include("matrix_generators.jl")
|
||||||
|
|
||||||
|
struct MatrixGroup{N,T,R,S} <: AbstractMatrixGroup{N,T}
|
||||||
|
base_ring::R
|
||||||
|
alphabet::Alphabet{S}
|
||||||
|
gens::Vector{S}
|
||||||
|
end
|
||||||
|
|
||||||
|
function MatrixGroup{N}(
|
||||||
|
gens::AbstractVector{<:AbstractMatrix{T}},
|
||||||
|
base_ring = T,
|
||||||
|
) where {N,T}
|
||||||
|
S = map(enumerate(gens)) do (i, mat)
|
||||||
|
id = Symbol('m', Groups.subscriptify(i))
|
||||||
|
return MatrixElt{N}(id, mat)
|
||||||
|
end
|
||||||
|
alphabet = Alphabet(S)
|
||||||
|
|
||||||
|
R = typeof(base_ring)
|
||||||
|
St = eltype(S)
|
||||||
|
|
||||||
|
return MatrixGroup{N,T,R,St}(base_ring, alphabet, S)
|
||||||
|
end
|
||||||
|
|
||||||
|
GroupsCore.ngens(M::MatrixGroup) = length(M.gens)
|
63
src/types.jl
63
src/types.jl
@ -42,10 +42,7 @@ KnuthBendix.alphabet(G::AbstractFPGroup) = alphabet(ordering(G))
|
|||||||
Base.@propagate_inbounds function (G::AbstractFPGroup)(
|
Base.@propagate_inbounds function (G::AbstractFPGroup)(
|
||||||
word::AbstractVector{<:Integer},
|
word::AbstractVector{<:Integer},
|
||||||
)
|
)
|
||||||
@boundscheck @assert all(
|
@boundscheck @assert all(l -> 1 <= l <= length(alphabet(G)), word)
|
||||||
l -> 1 <= l <= length(alphabet(G)),
|
|
||||||
word,
|
|
||||||
)
|
|
||||||
return FPGroupElement(word_type(G)(word), G)
|
return FPGroupElement(word_type(G)(word), G)
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -53,8 +50,9 @@ end
|
|||||||
|
|
||||||
Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G)
|
Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G)
|
||||||
|
|
||||||
Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} =
|
function Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup}
|
||||||
FPGroupElement{FPG,word_type(FPG)}
|
return FPGroupElement{FPG,word_type(FPG)}
|
||||||
|
end
|
||||||
|
|
||||||
include("iteration.jl")
|
include("iteration.jl")
|
||||||
|
|
||||||
@ -65,8 +63,9 @@ function GroupsCore.gens(G::AbstractFPGroup, i::Integer)
|
|||||||
l = alphabet(G)[G.gens[i]]
|
l = alphabet(G)[G.gens[i]]
|
||||||
return FPGroupElement(word_type(G)([l]), G)
|
return FPGroupElement(word_type(G)([l]), G)
|
||||||
end
|
end
|
||||||
GroupsCore.gens(G::AbstractFPGroup) =
|
function GroupsCore.gens(G::AbstractFPGroup)
|
||||||
[gens(G, i) for i in 1:GroupsCore.ngens(G)]
|
return [gens(G, i) for i in 1:GroupsCore.ngens(G)]
|
||||||
|
end
|
||||||
|
|
||||||
# TODO: ProductReplacementAlgorithm
|
# TODO: ProductReplacementAlgorithm
|
||||||
function Base.rand(
|
function Base.rand(
|
||||||
@ -79,9 +78,11 @@ function Base.rand(
|
|||||||
return FPGroupElement(word_type(G)(rand(1:nletters, l)), G)
|
return FPGroupElement(word_type(G)(rand(1:nletters, l)), G)
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.isfinite(::AbstractFPGroup) = (
|
function Base.isfinite(::AbstractFPGroup)
|
||||||
|
return (
|
||||||
@warn "using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong"; false
|
@warn "using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong"; false
|
||||||
)
|
)
|
||||||
|
end
|
||||||
|
|
||||||
## FPGroupElement
|
## FPGroupElement
|
||||||
|
|
||||||
@ -93,18 +94,22 @@ mutable struct FPGroupElement{Gr<:AbstractFPGroup,W<:AbstractWord} <:
|
|||||||
savedhash::UInt
|
savedhash::UInt
|
||||||
parent::Gr
|
parent::Gr
|
||||||
|
|
||||||
FPGroupElement(
|
function FPGroupElement(
|
||||||
word::W,
|
word::W,
|
||||||
G::AbstractFPGroup,
|
G::AbstractFPGroup,
|
||||||
hash::UInt = UInt(0),
|
hash::UInt = UInt(0),
|
||||||
) where {W<:AbstractWord} = new{typeof(G),W}(word, hash, G)
|
) where {W<:AbstractWord}
|
||||||
|
return new{typeof(G),W}(word, hash, G)
|
||||||
FPGroupElement{Gr,W}(word::AbstractWord, G::Gr) where {Gr,W} =
|
|
||||||
new{Gr,W}(word, UInt(0), G)
|
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.show(io::IO, ::Type{<:FPGroupElement{Gr}}) where {Gr} =
|
function FPGroupElement{Gr,W}(word::AbstractWord, G::Gr) where {Gr,W}
|
||||||
print(io, FPGroupElement, "{$Gr, …}")
|
return new{Gr,W}(word, UInt(0), G)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(io::IO, ::Type{<:FPGroupElement{Gr}}) where {Gr}
|
||||||
|
return print(io, FPGroupElement, "{$Gr, …}")
|
||||||
|
end
|
||||||
|
|
||||||
word(f::AbstractFPGroupElement) = f.word
|
word(f::AbstractFPGroupElement) = f.word
|
||||||
|
|
||||||
@ -142,11 +147,12 @@ function Base.:(*)(g::GEl, h::GEl) where {GEl<:AbstractFPGroupElement}
|
|||||||
return GEl(word(g) * word(h), parent(g))
|
return GEl(word(g) * word(h), parent(g))
|
||||||
end
|
end
|
||||||
|
|
||||||
GroupsCore.isfiniteorder(g::AbstractFPGroupElement) =
|
function GroupsCore.isfiniteorder(g::AbstractFPGroupElement)
|
||||||
isone(g) ? true :
|
return isone(g) ? true :
|
||||||
(
|
(
|
||||||
@warn "using generic isfiniteorder(::AbstractFPGroupElement): the returned `false` might be wrong"; false
|
@warn "using generic isfiniteorder(::AbstractFPGroupElement): the returned `false` might be wrong"; false
|
||||||
)
|
)
|
||||||
|
end
|
||||||
|
|
||||||
# additional methods:
|
# additional methods:
|
||||||
Base.isone(g::AbstractFPGroupElement) = (normalform!(g); isempty(word(g)))
|
Base.isone(g::AbstractFPGroupElement) = (normalform!(g); isempty(word(g)))
|
||||||
@ -167,9 +173,7 @@ end
|
|||||||
FreeGroup(gens, A::Alphabet) = FreeGroup(gens, KnuthBendix.LenLex(A))
|
FreeGroup(gens, A::Alphabet) = FreeGroup(gens, KnuthBendix.LenLex(A))
|
||||||
|
|
||||||
function FreeGroup(A::Alphabet)
|
function FreeGroup(A::Alphabet)
|
||||||
@boundscheck @assert all(
|
@boundscheck @assert all(KnuthBendix.hasinverse(l, A) for l in A)
|
||||||
KnuthBendix.hasinverse(l, A) for l in A
|
|
||||||
)
|
|
||||||
gens = Vector{eltype(A)}()
|
gens = Vector{eltype(A)}()
|
||||||
invs = Vector{eltype(A)}()
|
invs = Vector{eltype(A)}()
|
||||||
for l in A
|
for l in A
|
||||||
@ -193,8 +197,9 @@ function FreeGroup(n::Integer)
|
|||||||
return FreeGroup(symbols[1:2:2n], Alphabet(symbols, inverses))
|
return FreeGroup(symbols[1:2:2n], Alphabet(symbols, inverses))
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.show(io::IO, F::FreeGroup) =
|
function Base.show(io::IO, F::FreeGroup)
|
||||||
print(io, "free group on $(ngens(F)) generators")
|
return print(io, "free group on $(ngens(F)) generators")
|
||||||
|
end
|
||||||
|
|
||||||
# mandatory methods:
|
# mandatory methods:
|
||||||
KnuthBendix.ordering(F::FreeGroup) = F.ordering
|
KnuthBendix.ordering(F::FreeGroup) = F.ordering
|
||||||
@ -205,8 +210,9 @@ relations(F::FreeGroup) = Pair{eltype(F),eltype(F)}[]
|
|||||||
# these are mathematically correct
|
# these are mathematically correct
|
||||||
Base.isfinite(::FreeGroup) = false
|
Base.isfinite(::FreeGroup) = false
|
||||||
|
|
||||||
GroupsCore.isfiniteorder(g::AbstractFPGroupElement{<:FreeGroup}) =
|
function GroupsCore.isfiniteorder(g::AbstractFPGroupElement{<:FreeGroup})
|
||||||
isone(g) ? true : false
|
return isone(g) ? true : false
|
||||||
|
end
|
||||||
|
|
||||||
## FP Groups
|
## FP Groups
|
||||||
|
|
||||||
@ -223,7 +229,7 @@ function FPGroup(
|
|||||||
G::AbstractFPGroup,
|
G::AbstractFPGroup,
|
||||||
rels::AbstractVector{<:Pair{GEl,GEl}};
|
rels::AbstractVector{<:Pair{GEl,GEl}};
|
||||||
ordering = KnuthBendix.ordering(G),
|
ordering = KnuthBendix.ordering(G),
|
||||||
kwargs...
|
kwargs...,
|
||||||
) where {GEl<:FPGroupElement}
|
) where {GEl<:FPGroupElement}
|
||||||
for (lhs, rhs) in rels
|
for (lhs, rhs) in rels
|
||||||
@assert parent(lhs) === parent(rhs) === G
|
@assert parent(lhs) === parent(rhs) === G
|
||||||
@ -253,8 +259,9 @@ function Base.show(io::IO, G::FPGroup)
|
|||||||
return print(io, " ⟩")
|
return print(io, " ⟩")
|
||||||
end
|
end
|
||||||
|
|
||||||
Base.show(io::IO, ::Type{<:FPGroup{T}}) where {T} =
|
function Base.show(io::IO, ::Type{<:FPGroup{T}}) where {T}
|
||||||
print(io, FPGroup, "{$T, …}")
|
return print(io, FPGroup, "{$T, …}")
|
||||||
|
end
|
||||||
|
|
||||||
## GSymbol aka letter of alphabet
|
## GSymbol aka letter of alphabet
|
||||||
|
|
||||||
|
@ -11,19 +11,37 @@ function wlmetric_ball(
|
|||||||
center::T = one(first(S));
|
center::T = one(first(S));
|
||||||
radius = 2,
|
radius = 2,
|
||||||
op = *,
|
op = *,
|
||||||
threading=true
|
threading = true,
|
||||||
) where {T}
|
) where {T}
|
||||||
threading && return wlmetric_ball_thr(S, center, radius=radius, op=op)
|
threading && return wlmetric_ball_thr(S, center; radius = radius, op = op)
|
||||||
return wlmetric_ball_serial(S, center, radius=radius, op=op)
|
return wlmetric_ball_serial(S, center; radius = radius, op = op)
|
||||||
end
|
end
|
||||||
|
|
||||||
function wlmetric_ball_serial(S::AbstractVector{T}, center::T=one(first(S)); radius=2, op=*) where {T}
|
function wlmetric_ball_serial(
|
||||||
|
S::AbstractVector{T},
|
||||||
|
center::T = one(first(S));
|
||||||
|
radius = 2,
|
||||||
|
op = *,
|
||||||
|
) where {T}
|
||||||
@assert radius >= 1
|
@assert radius >= 1
|
||||||
old = union!([center], [center * s for s in S])
|
old = union!(OrderedSet([center]), [center * s for s in S])
|
||||||
return _wlmetric_ball(S, old, radius, op, collect, unique!)
|
sizes = [1, length(old)]
|
||||||
|
for _ in 2:radius
|
||||||
|
new = collect(
|
||||||
|
op(o, s) for o in @view(old.dict.keys[sizes[end-1]:end]) for s in S
|
||||||
|
)
|
||||||
|
union!(old, new)
|
||||||
|
push!(sizes, length(old))
|
||||||
|
end
|
||||||
|
return old.dict.keys, sizes[2:end]
|
||||||
end
|
end
|
||||||
|
|
||||||
function wlmetric_ball_thr(S::AbstractVector{T}, center::T=one(first(S)); radius=2, op=*) where {T}
|
function wlmetric_ball_thr(
|
||||||
|
S::AbstractVector{T},
|
||||||
|
center::T = one(first(S));
|
||||||
|
radius = 2,
|
||||||
|
op = *,
|
||||||
|
) where {T}
|
||||||
@assert radius >= 1
|
@assert radius >= 1
|
||||||
old = union!([center], [center * s for s in S])
|
old = union!([center], [center * s for s in S])
|
||||||
return _wlmetric_ball(S, old, radius, op, Folds.collect, Folds.unique)
|
return _wlmetric_ball(S, old, radius, op, Folds.collect, Folds.unique)
|
||||||
@ -31,11 +49,13 @@ end
|
|||||||
|
|
||||||
function _wlmetric_ball(S, old, radius, op, collect, unique)
|
function _wlmetric_ball(S, old, radius, op, collect, unique)
|
||||||
sizes = [1, length(old)]
|
sizes = [1, length(old)]
|
||||||
for r in 2:radius
|
for _ in 2:radius
|
||||||
old = let old = old, S = S,
|
old = let old = old, S = S
|
||||||
new = collect(
|
new = collect(
|
||||||
(g = op(o, s); hash(g); g)
|
(g = op(o, s);
|
||||||
for o in @view(old[sizes[end-1]:end]) for s in S
|
normalform!(g);
|
||||||
|
hash(g);
|
||||||
|
g) for o in @view(old[sizes[end-1]:end]) for s in S
|
||||||
)
|
)
|
||||||
|
|
||||||
append!(old, new)
|
append!(old, new)
|
||||||
@ -45,4 +65,3 @@ function _wlmetric_ball(S, old, radius, op, collect, unique)
|
|||||||
end
|
end
|
||||||
return old, sizes[2:end]
|
return old, sizes[2:end]
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@ -7,7 +7,7 @@ using Groups.MatrixGroups
|
|||||||
S = gens(SL3Z)
|
S = gens(SL3Z)
|
||||||
union!(S, inv.(S))
|
union!(S, inv.(S))
|
||||||
|
|
||||||
_, sizes = Groups.wlmetric_ball(S, radius=4)
|
_, sizes = Groups.wlmetric_ball(S; radius = 4)
|
||||||
|
|
||||||
@test sizes == [13, 121, 883, 5455]
|
@test sizes == [13, 121, 883, 5455]
|
||||||
|
|
||||||
@ -20,9 +20,9 @@ using Groups.MatrixGroups
|
|||||||
|
|
||||||
S = [w, r, s]
|
S = [w, r, s]
|
||||||
S = unique([S; inv.(S)])
|
S = unique([S; inv.(S)])
|
||||||
_, sizes = Groups.wlmetric_ball(S, radius=4)
|
_, sizes = Groups.wlmetric_ball(S; radius = 4)
|
||||||
@test sizes == [7, 33, 141, 561]
|
@test sizes == [7, 33, 141, 561]
|
||||||
_, sizes = Groups.wlmetric_ball_serial(S, radius=4)
|
_, sizes = Groups.wlmetric_ball_serial(S; radius = 4)
|
||||||
@test sizes == [7, 33, 141, 561]
|
@test sizes == [7, 33, 141, 561]
|
||||||
|
|
||||||
Logging.with_logger(Logging.NullLogger()) do
|
Logging.with_logger(Logging.NullLogger()) do
|
||||||
@ -35,15 +35,18 @@ using Groups.MatrixGroups
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
|
||||||
x = w * inv(w) * r
|
x = w * inv(w) * r
|
||||||
|
|
||||||
@test length(word(x)) == 5
|
@test length(word(x)) == 5
|
||||||
@test size(x) == (3, 3)
|
@test size(x) == (3, 3)
|
||||||
@test eltype(x) == Int8
|
@test eltype(x) == Int8
|
||||||
|
|
||||||
@test contains(sprint(print, SL3Z), "special linear group of 3×3")
|
@test contains(sprint(show, SL3Z), "SL{3,Int8}")
|
||||||
@test contains(sprint(show, MIME"text/plain"(), x), "SL{3,Int8} matrix:")
|
@test contains(
|
||||||
|
sprint(show, MIME"text/plain"(), SL3Z),
|
||||||
|
"special linear group",
|
||||||
|
)
|
||||||
|
@test contains(sprint(show, MIME"text/plain"(), x), "∈ SL{3,Int8}")
|
||||||
@test sprint(print, x) isa String
|
@test sprint(print, x) isa String
|
||||||
|
|
||||||
@test length(word(x)) == 3
|
@test length(word(x)) == 3
|
||||||
@ -62,8 +65,6 @@ using Groups.MatrixGroups
|
|||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
@test contains(sprint(print, Sp6), "group of 6×6 symplectic matrices")
|
|
||||||
|
|
||||||
x = gens(Sp6, 1)
|
x = gens(Sp6, 1)
|
||||||
x *= inv(x) * gens(Sp6, 2)
|
x *= inv(x) * gens(Sp6, 2)
|
||||||
|
|
||||||
@ -71,13 +72,50 @@ using Groups.MatrixGroups
|
|||||||
@test size(x) == (6, 6)
|
@test size(x) == (6, 6)
|
||||||
@test eltype(x) == Int8
|
@test eltype(x) == Int8
|
||||||
|
|
||||||
@test contains(sprint(show, MIME"text/plain"(), x), "6×6 symplectic matrix:")
|
@test contains(sprint(show, Sp6), "Sp{6,Int8}")
|
||||||
|
@test contains(
|
||||||
|
sprint(show, MIME"text/plain"(), Sp6),
|
||||||
|
"group of 6×6 symplectic matrices",
|
||||||
|
)
|
||||||
|
@test contains(sprint(show, MIME"text/plain"(), x), "∈ Sp{6,Int8}")
|
||||||
@test sprint(print, x) isa String
|
@test sprint(print, x) isa String
|
||||||
|
|
||||||
@test length(word(x)) == 1
|
@test length(word(x)) == 1
|
||||||
|
|
||||||
for g in gens(Sp6)
|
for g in gens(Sp6)
|
||||||
@test MatrixGroups.issymplectic(MatrixGroups.matrix_repr(g))
|
@test MatrixGroups.issymplectic(MatrixGroups.matrix(g))
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
@testset "General matrix group" begin
|
||||||
|
Sp6 = MatrixGroups.SymplecticGroup{6}(Int8)
|
||||||
|
G = Groups.MatrixGroup{6}(Matrix{Int16}.(gens(Sp6)))
|
||||||
|
|
||||||
|
Logging.with_logger(Logging.NullLogger()) do
|
||||||
|
@testset "GroupsCore conformance" begin
|
||||||
|
test_Group_interface(G)
|
||||||
|
g = G(rand(1:length(alphabet(G)), 10))
|
||||||
|
h = G(rand(1:length(alphabet(G)), 10))
|
||||||
|
|
||||||
|
test_GroupElement_interface(g, h)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
|
x = gens(G, 1)
|
||||||
|
x *= inv(x) * gens(G, 2)
|
||||||
|
|
||||||
|
@test length(word(x)) == 3
|
||||||
|
@test size(x) == (6, 6)
|
||||||
|
@test eltype(x) == Int16
|
||||||
|
|
||||||
|
@test contains(sprint(show, G), "H ⩽ GL{6,Int16}")
|
||||||
|
@test contains(
|
||||||
|
sprint(show, MIME"text/plain"(), G),
|
||||||
|
"subgroup of 6×6 invertible matrices",
|
||||||
|
)
|
||||||
|
@test contains(sprint(show, MIME"text/plain"(), x), "∈ H ⩽ GL{6,Int16}")
|
||||||
|
@test sprint(print, x) isa String
|
||||||
|
|
||||||
|
@test length(word(x)) == 1
|
||||||
|
end
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user