1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 06:30:29 +01:00

split tests into separate files

This commit is contained in:
kalmar 2017-05-15 10:12:46 +02:00
parent 2d3ed657e7
commit 5772e09ed7
3 changed files with 277 additions and 279 deletions

140
test/AutGroup-tests.jl Normal file
View File

@ -0,0 +1,140 @@
@testset "Automorphisms" begin
using Nemo
G = PermutationGroup(4)
@testset "AutSymbol" begin
@test_throws MethodError Groups.AutSymbol("a")
@test_throws MethodError Groups.AutSymbol("a", 1)
f = AutSymbol("a", 1, :(a()), v -> v)
@test isa(f, Groups.GSymbol)
@test isa(f, Groups.AutSymbol)
@test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol)
@test isa(Groups.rmul_autsymbol(1,2), Groups.AutSymbol)
@test isa(Groups.lmul_autsymbol(3,4), Groups.AutSymbol)
@test isa(Groups.flip_autsymbol(3), Groups.AutSymbol)
end
a,b,c,d = generators(FreeGroup(4))
domain = [a,b,c,d]
@testset "flip_autsymbol correctness" begin
@test Groups.flip_autsymbol(1)(domain) == [a^-1, b,c,d]
@test Groups.flip_autsymbol(2)(domain) == [a, b^-1,c,d]
@test Groups.flip_autsymbol(3)(domain) == [a, b,c^-1,d]
@test Groups.flip_autsymbol(4)(domain) == [a, b,c,d^-1]
@test inv(Groups.flip_autsymbol(1))(domain) == [a^-1, b,c,d]
@test inv(Groups.flip_autsymbol(2))(domain) == [a, b^-1,c,d]
@test inv(Groups.flip_autsymbol(3))(domain) == [a, b,c^-1,d]
@test inv(Groups.flip_autsymbol(4))(domain) == [a, b,c,d^-1]
end
@testset "perm_autsymbol correctness" begin
σ = Groups.perm_autsymbol(G([1,2,3,4]))
@test σ(domain) == domain
@test inv(σ)(domain) == domain
σ = Groups.perm_autsymbol(G([2,3,4,1]))
@test σ(domain) == [b, c, d, a]
@test inv(σ)(domain) == [d, a, b, c]
σ = Groups.perm_autsymbol(G([2,1,4,3]))
@test σ(domain) == [b, a, d, c]
@test inv(σ)(domain) == [b, a, d, c]
σ = Groups.perm_autsymbol(G([2,3,1,4]))
@test σ(domain) == [b,c,a,d]
@test inv(σ)(domain) == [c,a,b,d]
end
@testset "rmul/lmul_autsymbol correctness" begin
i,j = 1,2
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a*b,b,c,d]
@test inv(r)(domain) == [a*b^-1,b,c,d]
@test l(domain) == [b*a,b,c,d]
@test inv(l)(domain) == [b^-1*a,b,c,d]
i,j = 3,1
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b,c*a,d]
@test inv(r)(domain) == [a,b,c*a^-1,d]
@test l(domain) == [a,b,a*c,d]
@test inv(l)(domain) == [a,b,a^-1*c,d]
i,j = 4,3
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b,c,d*c]
@test inv(r)(domain) == [a,b,c,d*c^-1]
@test l(domain) == [a,b,c,c*d]
@test inv(l)(domain) == [a,b,c,c^-1*d]
i,j = 2,4
r = Groups.rmul_autsymbol(i,j)
l = Groups.lmul_autsymbol(i,j)
@test r(domain) == [a,b*d,c,d]
@test inv(r)(domain) == [a,b*d^-1,c,d]
@test l(domain) == [a,d*b,c,d]
@test inv(l)(domain) == [a,d^-1*b,c,d]
end
@testset "AutGroup/AutGroupElem constructors" begin
f = AutSymbol("a", 1, :(a()), v -> v)
@test isa(GWord(f), GWord)
@test isa(GWord(f), AutGroupElem)
@test isa(AutGroupElem(f), AutGroupElem)
@test isa(AutGroup(FreeGroup(3)), Group)
@test isa(AutGroup(FreeGroup(1)), FPGroup)
A = AutGroup(FreeGroup(1))
@test isa(f*f, AutWord)
@test isa(f^2, AutWord)
@test isa(f^-1, AutWord)
end
#
# @testset "eltary functions" begin
# f = perm_autsymbol([2,1,4,3])
# @test isa(inv(f), AutSymbol)
# @test isa(f^-1, AutWord)
# @test f^-1 == GWord(inv(f))
# @test inv(f) == f
# end
#
# @testset "reductions/arithmetic" begin
# f = perm_autsymbol([2,1,4,3])
# f² = Groups.r_multiply(AutWord(f), [f], reduced=false)
# @test Groups.simplify_perms!(f²) == false
# @test f² == one(typeof(f*f))
#
# a = rmul_autsymbol(1,2)*flip_autsymbol(2)
# b = flip_autsymbol(2)*inv(rmul_autsymbol(1,2))
# @test a*b == b*a
# @test a^3 * b^3 == one(a)
# end
#
# @testset "specific Aut(𝔽₄) tests" begin
# N = 4
# import Combinatorics.nthperm
# SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
# indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
#
# σs = [perm_autsymbol(perm) for perm in SymmetricGroup(N)[2:end]];
# ϱs = [rmul_autsymbol(i,j) for (i,j) in indexing]
# λs = [lmul_autsymbol(i,j) for (i,j) in indexing]
# ɛs = [flip_autsymbol(i) for i in 1:N];
#
# S = vcat(ϱs, λs, σs, ɛs)
# S = vcat(S, [inv(s) for s in S])
# @test isa(S, Vector{AutSymbol})
# @test length(S) == 102
# @test length(unique(S)) == 75
# S₁ = [GWord(s) for s in unique(S)]
# @test isa(S₁, Vector{AutWord})
# p = prod(S₁)
# @test length(p) == 53
# end
end

135
test/FreeGroup-tests.jl Normal file
View File

@ -0,0 +1,135 @@
@testset "Groups.FreeSymbols" begin
s = Groups.FreeSymbol("s")
t = Groups.FreeSymbol("t")
@testset "defines" begin
@test isa(Groups.FreeSymbol("aaaaaaaaaaaaaaaa"), Groups.GSymbol)
@test Groups.FreeSymbol("abc").pow == 1
@test isa(s, Groups.FreeSymbol)
@test isa(t, Groups.FreeSymbol)
end
@testset "eltary functions" begin
@test length(s) == 1
@test Groups.change_pow(s, 0) == Groups.change_pow(t, 0)
@test length(Groups.change_pow(s, 0)) == 0
@test inv(s).pow == -1
@test Groups.FreeSymbol("s", 3) == Groups.change_pow(s, 3)
@test Groups.FreeSymbol("s", 3) != Groups.FreeSymbol("t", 3)
@test Groups.change_pow(inv(s), -3) == inv(Groups.change_pow(s, 3))
end
@testset "powers" begin
s⁴ = Groups.change_pow(s,4)
@test s⁴.pow == 4
@test Groups.change_pow(s, 4) == Groups.FreeSymbol("s", 4)
end
end
@testset "FreeGroupElems" begin
s = Groups.FreeSymbol("s")
t = Groups.FreeSymbol("t", -2)
@testset "defines" begin
@test isa(Groups.GWord(s), Groups.GWord)
@test isa(Groups.GWord(s), FreeGroupElem)
@test isa(FreeGroupElem(s), Groups.GWord)
@test isa(convert(FreeGroupElem, s), Groups.GWord)
@test isa(convert(FreeGroupElem, s), FreeGroupElem)
@test isa(Vector{FreeGroupElem}([s,t]), Vector{FreeGroupElem})
@test length(FreeGroupElem(s)) == 1
@test length(FreeGroupElem(t)) == 2
end
@testset "eltary functions" begin
@test_skip (s*s).symbols == (s^2).symbols
@test_skip Vector{Groups.GWord{Groups.FreeSymbol}}([s,t]) ==
Vector{FreeGroupElem}([s,t])
@test_skip Vector{Groups.GWord}([s,t]) ==
[Groups.GWord(s), Groups.GWord(t)]
@test_skip hash([t^1,s^1]) == hash([t^2*inv(t),s*inv(s)*s])
end
end
@testset "FreeGroup" begin
@test isa(FreeGroup(["s", "t"]), Nemo.Group)
G = FreeGroup(["s", "t"])
@testset "elements constructors" begin
@test isa(G(), FreeGroupElem)
@test eltype(G.gens) == Groups.FreeSymbol
@test length(G.gens) == 2
@test_skip eltype(G.rels) == FreeGroupElem
@test_skip length(G.rels) == 0
@test eltype(generators(G)) == FreeGroupElem
@test length(generators(G)) == 2
end
s, t = generators(G)
@testset "internal arithmetic" begin
t_symb = Groups.FreeSymbol("t")
tt = deepcopy(t)
@test string(Groups.r_multiply!(tt,[inv(t_symb)]; reduced=true)) ==
"(id)"
tt = deepcopy(t)
@test string(Groups.r_multiply!(tt,[inv(t_symb)]; reduced=false)) ==
"t*t^-1"
tt = deepcopy(t)
@test string(Groups.l_multiply!(tt,[inv(t_symb)]; reduced=true)) ==
"(id)"
tt = deepcopy(t)
@test string(Groups.l_multiply!(tt,[inv(t_symb)]; reduced=false)) ==
"t^-1*t"
end
@testset "reductions" begin
@test length(G().symbols) == 1
@test length((G()*G()).symbols) == 0
@test G() == G()*G()
w = deepcopy(s)
push!(w.symbols, (s^-1).symbols[1])
@test Groups.reduce!(w) == parent(w)()
o = (t*s)^3
@test o == t*s*t*s*t*s
p = (t*s)^-3
@test p == s^-1*t^-1*s^-1*t^-1*s^-1*t^-1
@test o*p == parent(o*p)()
w = FreeGroupElem([o.symbols..., p.symbols...])
w.parent = G
@test Groups.reduce!(w).symbols ==Vector{Groups.FreeSymbol}([])
end
@testset "binary/inv operations" begin
@test parent(s) == G
@test parent(s) === parent(deepcopy(s))
@test isa(s*t, FreeGroupElem)
@test parent(s*t) == parent(s^2)
@test s*s == s^2
@test inv(s*s) == inv(s^2)
@test inv(s)^2 == inv(s^2)
@test inv(s)*inv(s) == inv(s^2)
@test inv(s*t) == inv(t)*inv(s)
w = s*t*s^-1
@test inv(w) == s*t^-1*s^-1
@test (t*s*t^-1)^10 == t*s^10*t^-1
@test (t*s*t^-1)^-10 == t*s^-10*t^-1
end
@testset "replacements" begin
a = Groups.FreeSymbol("a")
b = Groups.FreeSymbol("b")
@test Groups.is_subsymbol(a, Groups.change_pow(a,2)) == true
@test Groups.is_subsymbol(a, Groups.change_pow(a,-2)) == false
@test Groups.is_subsymbol(b, Groups.change_pow(a,-2)) == false
@test Groups.is_subsymbol(inv(b), Groups.change_pow(b,-2)) == true
c = s*t*s^-1*t^-1
@test findfirst(c, s^-1*t^-1) == 3
@test findnext(c*s^-1, s^-1*t^-1,3) == 3
@test findnext(c*s^-1*t^-1, s^-1*t^-1,4) == 5
@test findfirst(c*t, c) == 0
w = s*t*s^-1
subst = Dict{FreeGroupElem, FreeGroupElem}(w => s^1, s*t^-1 => t^4)
@test Groups.replace(c, 1, s*t, G()) == s^-1*t^-1
@test Groups.replace(c, 1, w, subst[w]) == s*t^-1
@test Groups.replace(s*c*t^-1, 1, w, subst[w]) == s^2*t^-2
@test Groups.replace(t*c*t, 2, w, subst[w]) == t*s
@test Groups.replace_all!(s*c*s*c*s, subst) == s*t^4*s*t^4*s
end
end

View File

@ -4,283 +4,6 @@ using Base.Test
# write your own tests here
@testset "Groups" begin
@testset "Groups.FreeSymbols" begin
s = Groups.FreeSymbol("s")
t = Groups.FreeSymbol("t")
@testset "defines" begin
@test isa(Groups.FreeSymbol("aaaaaaaaaaaaaaaa"), Groups.GSymbol)
@test Groups.FreeSymbol("abc").pow == 1
@test isa(s, Groups.FreeSymbol)
@test isa(t, Groups.FreeSymbol)
end
@testset "eltary functions" begin
@test length(s) == 1
@test Groups.change_pow(s, 0) == Groups.change_pow(t, 0)
@test length(Groups.change_pow(s, 0)) == 0
@test inv(s).pow == -1
@test Groups.FreeSymbol("s", 3) == Groups.change_pow(s, 3)
@test Groups.FreeSymbol("s", 3) != Groups.FreeSymbol("t", 3)
@test Groups.change_pow(inv(s), -3) == inv(Groups.change_pow(s, 3))
end
@testset "powers" begin
s⁴ = Groups.change_pow(s,4)
@test s⁴.pow == 4
@test Groups.change_pow(s, 4) == Groups.FreeSymbol("s", 4)
end
end
@testset "FreeGroupElems" begin
s = Groups.FreeSymbol("s")
t = Groups.FreeSymbol("t", -2)
@testset "defines" begin
@test isa(Groups.GWord(s), Groups.GWord)
@test isa(Groups.GWord(s), FreeGroupElem)
@test isa(FreeGroupElem(s), Groups.GWord)
@test isa(convert(FreeGroupElem, s), Groups.GWord)
@test isa(convert(FreeGroupElem, s), FreeGroupElem)
@test isa(Vector{FreeGroupElem}([s,t]), Vector{FreeGroupElem})
@test length(FreeGroupElem(s)) == 1
@test length(FreeGroupElem(t)) == 2
end
@testset "eltary functions" begin
@test_skip (s*s).symbols == (s^2).symbols
@test_skip Vector{Groups.GWord{Groups.FreeSymbol}}([s,t]) ==
Vector{FreeGroupElem}([s,t])
@test_skip Vector{Groups.GWord}([s,t]) ==
[Groups.GWord(s), Groups.GWord(t)]
@test_skip hash([t^1,s^1]) == hash([t^2*inv(t),s*inv(s)*s])
end
end
@testset "FreeGroup" begin
@test isa(FreeGroup(["s", "t"]), Nemo.Group)
@test isa(FreeGroup(["s", "t"]), Nemo.FPGroup)
@test isa(FreeGroup(2), Nemo.FPGroup)
G = FreeGroup(["s", "t"])
@testset "elements constructors" begin
@test isa(G(), FreeGroupElem)
@test eltype(G.gens) == Groups.FreeSymbol
@test length(G.gens) == 2
@test_skip eltype(G.rels) == FreeGroupElem
@test_skip length(G.rels) == 0
@test eltype(generators(G)) == FreeGroupElem
@test length(generators(G)) == 2
end
s, t = generators(G)
@testset "internal arithmetic" begin
t_symb = Groups.FreeSymbol("t")
tt = deepcopy(t)
@test string(Groups.r_multiply!(tt,[inv(t_symb)]; reduced=true)) ==
"(id)"
tt = deepcopy(t)
@test string(Groups.r_multiply!(tt,[inv(t_symb)]; reduced=false)) ==
"t*t^-1"
tt = deepcopy(t)
@test string(Groups.l_multiply!(tt,[inv(t_symb)]; reduced=true)) ==
"(id)"
tt = deepcopy(t)
@test string(Groups.l_multiply!(tt,[inv(t_symb)]; reduced=false)) ==
"t^-1*t"
end
@testset "reductions" begin
@test length(G().symbols) == 1
@test length((G()*G()).symbols) == 0
@test G() == G()*G()
w = deepcopy(s)
push!(w.symbols, (s^-1).symbols[1])
@test Groups.reduce!(w) == parent(w)()
o = (t*s)^3
@test o == t*s*t*s*t*s
p = (t*s)^-3
@test p == s^-1*t^-1*s^-1*t^-1*s^-1*t^-1
@test o*p == parent(o*p)()
w = FreeGroupElem([o.symbols..., p.symbols...])
w.parent = G
@test Groups.reduce!(w).symbols ==Vector{Groups.FreeSymbol}([])
end
@testset "binary/inv operations" begin
@test parent(s) == G
@test parent(s) === parent(deepcopy(s))
@test isa(s*t, FreeGroupElem)
@test parent(s*t) == parent(s^2)
@test s*s == s^2
@test inv(s*s) == inv(s^2)
@test inv(s)^2 == inv(s^2)
@test inv(s)*inv(s) == inv(s^2)
@test inv(s*t) == inv(t)*inv(s)
w = s*t*s^-1
@test inv(w) == s*t^-1*s^-1
@test (t*s*t^-1)^10 == t*s^10*t^-1
@test (t*s*t^-1)^-10 == t*s^-10*t^-1
end
@testset "replacements" begin
a = Groups.FreeSymbol("a")
b = Groups.FreeSymbol("b")
@test Groups.is_subsymbol(a, Groups.change_pow(a,2)) == true
@test Groups.is_subsymbol(a, Groups.change_pow(a,-2)) == false
@test Groups.is_subsymbol(b, Groups.change_pow(a,-2)) == false
@test Groups.is_subsymbol(inv(b), Groups.change_pow(b,-2)) == true
c = s*t*s^-1*t^-1
@test findfirst(c, s^-1*t^-1) == 3
@test findnext(c*s^-1, s^-1*t^-1,3) == 3
@test findnext(c*s^-1*t^-1, s^-1*t^-1,4) == 5
@test findfirst(c*t, c) == 0
w = s*t*s^-1
subst = Dict{FreeGroupElem, FreeGroupElem}(w => s^1, s*t^-1 => t^4)
@test Groups.replace(c, 1, s*t, G()) == s^-1*t^-1
@test Groups.replace(c, 1, w, subst[w]) == s*t^-1
@test Groups.replace(s*c*t^-1, 1, w, subst[w]) == s^2*t^-2
@test Groups.replace(t*c*t, 2, w, subst[w]) == t*s
@test Groups.replace_all!(s*c*s*c*s, subst) == s*t^4*s*t^4*s
end
end
@testset "Automorphisms" begin
using Nemo
@testset "AutSymbol" begin
@test_throws MethodError AutSymbol("a")
@test_throws MethodError AutSymbol("a", 1)
f = AutSymbol("a", 1, :(a()), v -> v)
@test isa(f, Groups.GSymbol)
@test isa(f, Groups.AutSymbol)
@test isa(Groups.perm_autsymbol(
PermutationGroup(4)([1,2,3,4])), AutSymbol)
@test isa(Groups.rmul_autsymbol(1,2), AutSymbol)
@test isa(Groups.lmul_autsymbol(3,4), AutSymbol)
@test isa(Groups.flip_autsymbol(3), AutSymbol)
end
@testset "flip_autsymbol correctness" begin
a,b,c,d = generators(FreeGroup(4))
domain = [a,b,c,d]
@test Groups.flip_autsymbol(1)(domain) == [a^-1, b,c,d]
@test Groups.flip_autsymbol(2)(domain) == [a, b^-1,c,d]
@test Groups.flip_autsymbol(3)(domain) == [a, b,c^-1,d]
@test Groups.flip_autsymbol(4)(domain) == [a, b,c,d^-1]
@test inv(Groups.flip_autsymbol(1))(domain) == [a^-1, b,c,d]
@test inv(Groups.flip_autsymbol(2))(domain) == [a, b^-1,c,d]
@test inv(Groups.flip_autsymbol(3))(domain) == [a, b,c^-1,d]
@test inv(Groups.flip_autsymbol(4))(domain) == [a, b,c,d^-1]
end
#
# @testset "symmetric_AutSymbol correctness" begin
# a,b,c,d = [FreeGroupElem(Groups.FreeSymbol(i)) for i in ["a", "b", "c", "d"]]
# domain = [a,b,c,d]
# σ = symmetric_AutSymbol([1,2,3,4])
# @test σ(domain) == domain
# @test inv(σ)(domain) == domain
#
# σ = symmetric_AutSymbol([2,3,4,1])
# @test σ(domain) == [b, c, d, a]
# @test inv(σ)(domain) == [d, a, b, c]
#
# σ = symmetric_AutSymbol([2,1,4,3])
# @test σ(domain) == [b, a, d, c]
# @test inv(σ)(domain) == [b, a, d, c]
#
# σ = symmetric_AutSymbol([2,3,1,4])
# @test σ(domain) == [b,c,a,d]
# @test inv(σ)(domain) == [c,a,b,d]
# end
#
# @testset "mul_AutSymbol correctness" begin
# a,b,c,d = [FreeGroupElem(Groups.FreeSymbol(i)) for i in ["a", "b", "c", "d"]]
# domain = [a,b,c,d]
# i,j = 1,2
# r = rmul_AutSymbol(i,j)
# l = lmul_AutSymbol(i,j)
# @test r(domain) == [a*b,b,c,d]
# @test inv(r)(domain) == [a*b^-1,b,c,d]
# @test l(domain) == [b*a,b,c,d]
# @test inv(l)(domain) == [b^-1*a,b,c,d]
#
# i,j = 3,1
# r = rmul_AutSymbol(i,j)
# l = lmul_AutSymbol(i,j)
# @test r(domain) == [a,b,c*a,d]
# @test inv(r)(domain) == [a,b,c*a^-1,d]
# @test l(domain) == [a,b,a*c,d]
# @test inv(l)(domain) == [a,b,a^-1*c,d]
#
#
# i,j = 4,3
# r = rmul_AutSymbol(i,j)
# l = lmul_AutSymbol(i,j)
# @test r(domain) == [a,b,c,d*c]
# @test inv(r)(domain) == [a,b,c,d*c^-1]
# @test l(domain) == [a,b,c,c*d]
# @test inv(l)(domain) == [a,b,c,c^-1*d]
#
#
# i,j = 2,4
# r = rmul_AutSymbol(i,j)
# l = lmul_AutSymbol(i,j)
# @test r(domain) == [a,b*d,c,d]
# @test inv(r)(domain) == [a,b*d^-1,c,d]
# @test l(domain) == [a,d*b,c,d]
# @test inv(l)(domain) == [a,d^-1*b,c,d]
# end
#
# @testset "AutWords" begin
# f = AutSymbol("a", 1, :(a()), v -> v)
# @test isa(GWord(f), GWord)
# @test isa(GWord(f), AutWord)
# @test isa(AutWord(f), AutWord)
# @test isa(f*f, AutWord)
# @test isa(f^2, AutWord)
# @test isa(f^-1, AutWord)
# end
#
# @testset "eltary functions" begin
# f = symmetric_AutSymbol([2,1,4,3])
# @test isa(inv(f), AutSymbol)
# @test isa(f^-1, AutWord)
# @test f^-1 == GWord(inv(f))
# @test inv(f) == f
# end
#
# @testset "reductions/arithmetic" begin
# f = symmetric_AutSymbol([2,1,4,3])
# f² = Groups.r_multiply(AutWord(f), [f], reduced=false)
# @test Groups.simplify_perms!(f²) == false
# @test f² == one(typeof(f*f))
#
# a = rmul_AutSymbol(1,2)*flip_AutSymbol(2)
# b = flip_AutSymbol(2)*inv(rmul_AutSymbol(1,2))
# @test a*b == b*a
# @test a^3 * b^3 == one(a)
# end
#
# @testset "specific Aut(𝔽₄) tests" begin
# N = 4
# import Combinatorics.nthperm
# SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
# indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
#
# σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
# ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
# λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
# ɛs = [flip_AutSymbol(i) for i in 1:N];
#
# S = vcat(ϱs, λs, σs, ɛs)
# S = vcat(S, [inv(s) for s in S])
# @test isa(S, Vector{AutSymbol})
# @test length(S) == 102
# @test length(unique(S)) == 75
# S₁ = [GWord(s) for s in unique(S)]
# @test isa(S₁, Vector{AutWord})
# p = prod(S₁)
# @test length(p) == 53
# end
# end
# include("FreeGroup-tests.jl")
include("AutGroup-tests.jl")
end