mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-11 14:02:33 +01:00
further tests
This commit is contained in:
parent
f2e5eebecf
commit
639c05b4fa
257
test/runtests.jl
257
test/runtests.jl
@ -120,8 +120,8 @@ using Base.Test
|
||||
end
|
||||
|
||||
@testset "replacements" begin
|
||||
a = FPSymbol("a")
|
||||
b = FPSymbol("b")
|
||||
a = Groups.FreeSymbol("a")
|
||||
b = Groups.FreeSymbol("b")
|
||||
@test Groups.is_subsymbol(a, Groups.change_pow(a,2)) == true
|
||||
@test Groups.is_subsymbol(a, Groups.change_pow(a,-2)) == false
|
||||
@test Groups.is_subsymbol(b, Groups.change_pow(a,-2)) == false
|
||||
@ -132,7 +132,7 @@ using Base.Test
|
||||
@test findnext(c*s^-1*t^-1, s^-1*t^-1,4) == 5
|
||||
@test findfirst(c*t, c) == 0
|
||||
w = s*t*s^-1
|
||||
subst = Dict{FPGroupElem, FPGroupElem}(w => s^1, s*t^-1 => t^4)
|
||||
subst = Dict{FreeGroupElem, FreeGroupElem}(w => s^1, s*t^-1 => t^4)
|
||||
@test Groups.replace(c, 1, s*t, G()) == s^-1*t^-1
|
||||
@test Groups.replace(c, 1, w, subst[w]) == s*t^-1
|
||||
@test Groups.replace(s*c*t^-1, 1, w, subst[w]) == s^2*t^-2
|
||||
@ -141,141 +141,142 @@ using Base.Test
|
||||
end
|
||||
end
|
||||
|
||||
|
||||
@testset "Automorphisms" begin
|
||||
@testset "AutSymbol" begin
|
||||
@test_throws MethodError AutSymbol("a")
|
||||
@test_throws MethodError AutSymbol("a", 1)
|
||||
f = AutSymbol("a", 1, :(a()), v -> v)
|
||||
@test isa(f, GSymbol)
|
||||
@test isa(f, AutSymbol)
|
||||
@test isa(f, Groups.GSymbol)
|
||||
@test isa(f, Groups.AutSymbol)
|
||||
@test isa(symmetric_AutSymbol([1,2,3,4]), AutSymbol)
|
||||
@test isa(rmul_AutSymbol(1,2), AutSymbol)
|
||||
@test isa(lmul_AutSymbol(3,4), AutSymbol)
|
||||
@test isa(flip_AutSymbol(3), AutSymbol)
|
||||
end
|
||||
|
||||
@testset "flip_AutSymbol correctness" begin
|
||||
a,b,c,d = [FPGroupElem(FPSymbol(i)) for i in ["a", "b", "c", "d"]]
|
||||
domain = [a,b,c,d]
|
||||
@test flip_AutSymbol(1)(domain) == [a^-1, b,c,d]
|
||||
@test flip_AutSymbol(2)(domain) == [a, b^-1,c,d]
|
||||
@test flip_AutSymbol(3)(domain) == [a, b,c^-1,d]
|
||||
@test flip_AutSymbol(4)(domain) == [a, b,c,d^-1]
|
||||
@test inv(flip_AutSymbol(1))(domain) == [a^-1, b,c,d]
|
||||
@test inv(flip_AutSymbol(2))(domain) == [a, b^-1,c,d]
|
||||
@test inv(flip_AutSymbol(3))(domain) == [a, b,c^-1,d]
|
||||
@test inv(flip_AutSymbol(4))(domain) == [a, b,c,d^-1]
|
||||
end
|
||||
|
||||
@testset "symmetric_AutSymbol correctness" begin
|
||||
a,b,c,d = [FPGroupElem(FPSymbol(i)) for i in ["a", "b", "c", "d"]]
|
||||
domain = [a,b,c,d]
|
||||
σ = symmetric_AutSymbol([1,2,3,4])
|
||||
@test σ(domain) == domain
|
||||
@test inv(σ)(domain) == domain
|
||||
|
||||
σ = symmetric_AutSymbol([2,3,4,1])
|
||||
@test σ(domain) == [b, c, d, a]
|
||||
@test inv(σ)(domain) == [d, a, b, c]
|
||||
|
||||
σ = symmetric_AutSymbol([2,1,4,3])
|
||||
@test σ(domain) == [b, a, d, c]
|
||||
@test inv(σ)(domain) == [b, a, d, c]
|
||||
|
||||
σ = symmetric_AutSymbol([2,3,1,4])
|
||||
@test σ(domain) == [b,c,a,d]
|
||||
@test inv(σ)(domain) == [c,a,b,d]
|
||||
end
|
||||
|
||||
@testset "mul_AutSymbol correctness" begin
|
||||
a,b,c,d = [FPGroupElem(FPSymbol(i)) for i in ["a", "b", "c", "d"]]
|
||||
domain = [a,b,c,d]
|
||||
i,j = 1,2
|
||||
r = rmul_AutSymbol(i,j)
|
||||
l = lmul_AutSymbol(i,j)
|
||||
@test r(domain) == [a*b,b,c,d]
|
||||
@test inv(r)(domain) == [a*b^-1,b,c,d]
|
||||
@test l(domain) == [b*a,b,c,d]
|
||||
@test inv(l)(domain) == [b^-1*a,b,c,d]
|
||||
|
||||
i,j = 3,1
|
||||
r = rmul_AutSymbol(i,j)
|
||||
l = lmul_AutSymbol(i,j)
|
||||
@test r(domain) == [a,b,c*a,d]
|
||||
@test inv(r)(domain) == [a,b,c*a^-1,d]
|
||||
@test l(domain) == [a,b,a*c,d]
|
||||
@test inv(l)(domain) == [a,b,a^-1*c,d]
|
||||
|
||||
|
||||
i,j = 4,3
|
||||
r = rmul_AutSymbol(i,j)
|
||||
l = lmul_AutSymbol(i,j)
|
||||
@test r(domain) == [a,b,c,d*c]
|
||||
@test inv(r)(domain) == [a,b,c,d*c^-1]
|
||||
@test l(domain) == [a,b,c,c*d]
|
||||
@test inv(l)(domain) == [a,b,c,c^-1*d]
|
||||
|
||||
|
||||
i,j = 2,4
|
||||
r = rmul_AutSymbol(i,j)
|
||||
l = lmul_AutSymbol(i,j)
|
||||
@test r(domain) == [a,b*d,c,d]
|
||||
@test inv(r)(domain) == [a,b*d^-1,c,d]
|
||||
@test l(domain) == [a,d*b,c,d]
|
||||
@test inv(l)(domain) == [a,d^-1*b,c,d]
|
||||
end
|
||||
|
||||
@testset "AutWords" begin
|
||||
f = AutSymbol("a", 1, :(a()), v -> v)
|
||||
@test isa(GWord(f), GWord)
|
||||
@test isa(GWord(f), AutWord)
|
||||
@test isa(AutWord(f), AutWord)
|
||||
@test isa(f*f, AutWord)
|
||||
@test isa(f^2, AutWord)
|
||||
@test isa(f^-1, AutWord)
|
||||
end
|
||||
|
||||
@testset "eltary functions" begin
|
||||
f = symmetric_AutSymbol([2,1,4,3])
|
||||
@test isa(inv(f), AutSymbol)
|
||||
@test isa(f^-1, AutWord)
|
||||
@test f^-1 == GWord(inv(f))
|
||||
@test inv(f) == f
|
||||
end
|
||||
|
||||
@testset "reductions/arithmetic" begin
|
||||
f = symmetric_AutSymbol([2,1,4,3])
|
||||
f² = Groups.r_multiply(AutWord(f), [f], reduced=false)
|
||||
@test Groups.simplify_perms!(f²) == false
|
||||
@test f² == one(typeof(f*f))
|
||||
|
||||
a = rmul_AutSymbol(1,2)*flip_AutSymbol(2)
|
||||
b = flip_AutSymbol(2)*inv(rmul_AutSymbol(1,2))
|
||||
@test a*b == b*a
|
||||
@test a^3 * b^3 == one(a)
|
||||
end
|
||||
|
||||
@testset "specific Aut(𝔽₄) tests" begin
|
||||
N = 4
|
||||
import Combinatorics.nthperm
|
||||
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
||||
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||
|
||||
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||
|
||||
S = vcat(ϱs, λs, σs, ɛs)
|
||||
S = vcat(S, [inv(s) for s in S])
|
||||
@test isa(S, Vector{AutSymbol})
|
||||
@test length(S) == 102
|
||||
@test length(unique(S)) == 75
|
||||
S₁ = [GWord(s) for s in unique(S)]
|
||||
@test isa(S₁, Vector{AutWord})
|
||||
p = prod(S₁)
|
||||
@test length(p) == 53
|
||||
end
|
||||
end
|
||||
# @testset "flip_AutSymbol correctness" begin
|
||||
# a,b,c,d = [FreeGroupElem(Groups.FreeSymbol(i)) for i in ["a", "b", "c", "d"]]
|
||||
# domain = [a,b,c,d]
|
||||
# @test flip_AutSymbol(1)(domain) == [a^-1, b,c,d]
|
||||
# @test flip_AutSymbol(2)(domain) == [a, b^-1,c,d]
|
||||
# @test flip_AutSymbol(3)(domain) == [a, b,c^-1,d]
|
||||
# @test flip_AutSymbol(4)(domain) == [a, b,c,d^-1]
|
||||
# @test inv(flip_AutSymbol(1))(domain) == [a^-1, b,c,d]
|
||||
# @test inv(flip_AutSymbol(2))(domain) == [a, b^-1,c,d]
|
||||
# @test inv(flip_AutSymbol(3))(domain) == [a, b,c^-1,d]
|
||||
# @test inv(flip_AutSymbol(4))(domain) == [a, b,c,d^-1]
|
||||
# end
|
||||
#
|
||||
# @testset "symmetric_AutSymbol correctness" begin
|
||||
# a,b,c,d = [FreeGroupElem(Groups.FreeSymbol(i)) for i in ["a", "b", "c", "d"]]
|
||||
# domain = [a,b,c,d]
|
||||
# σ = symmetric_AutSymbol([1,2,3,4])
|
||||
# @test σ(domain) == domain
|
||||
# @test inv(σ)(domain) == domain
|
||||
#
|
||||
# σ = symmetric_AutSymbol([2,3,4,1])
|
||||
# @test σ(domain) == [b, c, d, a]
|
||||
# @test inv(σ)(domain) == [d, a, b, c]
|
||||
#
|
||||
# σ = symmetric_AutSymbol([2,1,4,3])
|
||||
# @test σ(domain) == [b, a, d, c]
|
||||
# @test inv(σ)(domain) == [b, a, d, c]
|
||||
#
|
||||
# σ = symmetric_AutSymbol([2,3,1,4])
|
||||
# @test σ(domain) == [b,c,a,d]
|
||||
# @test inv(σ)(domain) == [c,a,b,d]
|
||||
# end
|
||||
#
|
||||
# @testset "mul_AutSymbol correctness" begin
|
||||
# a,b,c,d = [FreeGroupElem(Groups.FreeSymbol(i)) for i in ["a", "b", "c", "d"]]
|
||||
# domain = [a,b,c,d]
|
||||
# i,j = 1,2
|
||||
# r = rmul_AutSymbol(i,j)
|
||||
# l = lmul_AutSymbol(i,j)
|
||||
# @test r(domain) == [a*b,b,c,d]
|
||||
# @test inv(r)(domain) == [a*b^-1,b,c,d]
|
||||
# @test l(domain) == [b*a,b,c,d]
|
||||
# @test inv(l)(domain) == [b^-1*a,b,c,d]
|
||||
#
|
||||
# i,j = 3,1
|
||||
# r = rmul_AutSymbol(i,j)
|
||||
# l = lmul_AutSymbol(i,j)
|
||||
# @test r(domain) == [a,b,c*a,d]
|
||||
# @test inv(r)(domain) == [a,b,c*a^-1,d]
|
||||
# @test l(domain) == [a,b,a*c,d]
|
||||
# @test inv(l)(domain) == [a,b,a^-1*c,d]
|
||||
#
|
||||
#
|
||||
# i,j = 4,3
|
||||
# r = rmul_AutSymbol(i,j)
|
||||
# l = lmul_AutSymbol(i,j)
|
||||
# @test r(domain) == [a,b,c,d*c]
|
||||
# @test inv(r)(domain) == [a,b,c,d*c^-1]
|
||||
# @test l(domain) == [a,b,c,c*d]
|
||||
# @test inv(l)(domain) == [a,b,c,c^-1*d]
|
||||
#
|
||||
#
|
||||
# i,j = 2,4
|
||||
# r = rmul_AutSymbol(i,j)
|
||||
# l = lmul_AutSymbol(i,j)
|
||||
# @test r(domain) == [a,b*d,c,d]
|
||||
# @test inv(r)(domain) == [a,b*d^-1,c,d]
|
||||
# @test l(domain) == [a,d*b,c,d]
|
||||
# @test inv(l)(domain) == [a,d^-1*b,c,d]
|
||||
# end
|
||||
#
|
||||
# @testset "AutWords" begin
|
||||
# f = AutSymbol("a", 1, :(a()), v -> v)
|
||||
# @test isa(GWord(f), GWord)
|
||||
# @test isa(GWord(f), AutWord)
|
||||
# @test isa(AutWord(f), AutWord)
|
||||
# @test isa(f*f, AutWord)
|
||||
# @test isa(f^2, AutWord)
|
||||
# @test isa(f^-1, AutWord)
|
||||
# end
|
||||
#
|
||||
# @testset "eltary functions" begin
|
||||
# f = symmetric_AutSymbol([2,1,4,3])
|
||||
# @test isa(inv(f), AutSymbol)
|
||||
# @test isa(f^-1, AutWord)
|
||||
# @test f^-1 == GWord(inv(f))
|
||||
# @test inv(f) == f
|
||||
# end
|
||||
#
|
||||
# @testset "reductions/arithmetic" begin
|
||||
# f = symmetric_AutSymbol([2,1,4,3])
|
||||
# f² = Groups.r_multiply(AutWord(f), [f], reduced=false)
|
||||
# @test Groups.simplify_perms!(f²) == false
|
||||
# @test f² == one(typeof(f*f))
|
||||
#
|
||||
# a = rmul_AutSymbol(1,2)*flip_AutSymbol(2)
|
||||
# b = flip_AutSymbol(2)*inv(rmul_AutSymbol(1,2))
|
||||
# @test a*b == b*a
|
||||
# @test a^3 * b^3 == one(a)
|
||||
# end
|
||||
#
|
||||
# @testset "specific Aut(𝔽₄) tests" begin
|
||||
# N = 4
|
||||
# import Combinatorics.nthperm
|
||||
# SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
||||
# indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||
#
|
||||
# σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||
# ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
# λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
# ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||
#
|
||||
# S = vcat(ϱs, λs, σs, ɛs)
|
||||
# S = vcat(S, [inv(s) for s in S])
|
||||
# @test isa(S, Vector{AutSymbol})
|
||||
# @test length(S) == 102
|
||||
# @test length(unique(S)) == 75
|
||||
# S₁ = [GWord(s) for s in unique(S)]
|
||||
# @test isa(S₁, Vector{AutWord})
|
||||
# p = prod(S₁)
|
||||
# @test length(p) == 53
|
||||
# end
|
||||
# end
|
||||
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user