1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-25 18:15:29 +01:00

update tests

This commit is contained in:
kalmarek 2018-09-21 19:11:37 +02:00
parent 3b1694f851
commit 65d6a75bcb
3 changed files with 28 additions and 31 deletions

View File

@ -130,7 +130,6 @@
f = Groups.perm_autsymbol([2,1,4,3])
@test isa(inv(f), Groups.AutSymbol)
@test_throws MethodError f^-1
@test_throws MethodError f*f
@test A(f)^-1 == A(inv(f))

View File

@ -1,5 +1,7 @@
@testset "DirectProducts" begin
×(a,b) = Groups.pow(a,b)
@testset "Constructors" begin
G = PermutationGroup(3)
g = G([2,3,1])
@ -33,7 +35,6 @@
@test_throws DomainError GG(g,g,g)
@test GG(g,g^2) == h
@test size(h) == (2,)
@test h[1] == g
@test h[2] == g^2
h[2] = G()
@ -62,10 +63,10 @@
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectProductGroup{typeof(G)}
@test parent((G×G)(g,g^2)) == DirectProductGroup(G,2)
F = GF(13)
F = AdditiveGroup(GF(13))
@test elem_type(F×F) == DirectProductGroupElem{Groups.AddGrpElem{elem_type(F)}}
@test parent_type(typeof((F×F)(1,5))) == Groups.DirectProductGroup{AddGrp{typeof(F)}}
@test elem_type(F×F) == DirectProductGroupElem{Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}}
@test parent_type(typeof((F×F)(1,5))) == Groups.DirectProductGroup{Groups.AddGrp{AbstractAlgebra.GFField{Int}}}
parent((F×F)(1,5)) == DirectProductGroup(F,2)
end
@ -160,22 +161,20 @@
@testset "Misc" begin
F = GF(5)
FF = DirectProductGroup(F,2)
FF = DirectProductGroup(AdditiveGroup(F),2)
@test order(FF) == 25
elts = vec(collect(elements(FF)))
@test length(elts) == 25
@test all([g*inv(g) for g in elts] .== FF())
@test all([g*inv(g) == FF() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
FF = DirectProductGroup(MultiplicativeGroup(F), 3)
@test order(FF) == 64
elts = vec(collect(elements(FF)))
@test length(elts) == 64
@test all([g*inv(g) for g in elts] .== FF())
@test all([g*inv(g) == FF() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
@ -187,7 +186,7 @@
elts = vec(collect(elements(GG)))
@test length(elts) == 36
@test all([g*inv(g) for g in elts] .== GG())
@test all([g*inv(g) == GG() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
end
end

View File

@ -1,23 +1,23 @@
@testset "WreathProducts" begin
S_3 = PermutationGroup(3)
R, x = PolynomialRing(QQ, "x")
F, a = NumberField(x^2 + 1, "a")
S_2 = PermutationGroup(2)
b = S_3([2,3,1])
a = S_2([2,1])
@testset "Constructors" begin
@test isa(Groups.WreathProduct(F, S_3), AbstractAlgebra.Group)
@test isa(Groups.WreathProduct(F, S_3), Groups.WreathProduct)
@test isa(Groups.WreathProduct(F, S_3), Groups.WreathProduct{AddGrp{Generic.ResField{Generic.Poly{Rational{BigInt}}}}, Int64})
@test isa(Groups.WreathProduct(S_2, S_3), AbstractAlgebra.Group)
B3 = Groups.WreathProduct(S_2, S_3)
@test B3 isa Groups.WreathProduct
@test B3 isa WreathProduct{AbstractAlgebra.Generic.PermGroup{Int}, Int}
aa = Groups.DirectProductGroupElem([a^0 ,a, a^2])
@test isa(Groups.WreathProductElem(aa, b), AbstractAlgebra.GroupElem)
@test isa(Groups.WreathProductElem(aa, b), Groups.WreathProductElem)
@test isa(Groups.WreathProductElem(aa, b), Groups.WreathProductElem{AddGrpElem{Generic.ResF{Generic.Poly{Rational{BigInt}}}}, Int64})
x = Groups.WreathProductElem(aa, b)
@test x isa Groups.WreathProductElem
@test x isa Groups.WreathProductElem{AbstractAlgebra.Generic.perm{Int}, Int}
B3 = Groups.WreathProduct(F, S_3)
@test B3.N == Groups.DirectProductGroup(F, 3)
@test B3.N == Groups.DirectProductGroup(S_2, 3)
@test B3.P == S_3
@test B3(aa, b) == Groups.WreathProductElem(aa, b)
@ -30,23 +30,23 @@
end
@testset "Types" begin
B3 = Groups.WreathProduct(F, S_3)
B3 = Groups.WreathProduct(S_2, S_3)
@test elem_type(B3) == Groups.WreathProductElem{AddGrpElem{elem_type(F)}, Int}
@test elem_type(B3) == Groups.WreathProductElem{perm{Int}, Int}
@test parent_type(typeof(B3())) == Groups.WreathProduct{parent_type(typeof(B3.N.group())), Int}
@test parent(B3()) == Groups.WreathProduct(F,S_3)
@test parent(B3()) == Groups.WreathProduct(S_2,S_3)
@test parent(B3()) == B3
end
@testset "Basic operations on WreathProductElem" begin
aa = Groups.DirectProductGroupElem([a^0 ,a, a^2])
B3 = Groups.WreathProduct(F, S_3)
B3 = Groups.WreathProduct(S_2, S_3)
g = B3(aa, b)
@test g.p == b
@test g.n == DirectProductGroupElem(AddGrpElem.(aa.elts))
@test g.n == DirectProductGroupElem(aa.elts)
h = deepcopy(g)
@test h == g
@ -66,9 +66,8 @@
@test hash(g) != hash(h)
end
@testset "Group arithmetic" begin
B4 = Groups.WreathProduct(GF(3), PermutationGroup(4))
B4 = Groups.WreathProduct(AdditiveGroup(GF(3)), PermutationGroup(4))
x = B4([0,1,2,0], perm"(1,2,3)(4)")
@test inv(x) == B4([1,0,2,0], perm"(1,3,2)(4)")
@ -91,8 +90,8 @@
B3 = Groups.WreathProduct(GF(3), S_3)
@test order(B3) == 3^3*6
B3 = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
@test order(B3) == 2^3*6
# B3 = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
# @test order(B3) == 2^3*6
Wr = WreathProduct(PermutationGroup(2),PermutationGroup(4))
@ -102,7 +101,7 @@
elts = [elements(Wr)...]
@test length(elts) == order(Wr)
@test all([g*inv(g) for g in elts] .== Wr())
@test all([g*inv(g) == Wr() for g in elts])
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
end