mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-12 06:12:33 +01:00
add rotation_element and correct Te, Ta, Tα
This commit is contained in:
parent
4014b4f7b8
commit
67e7a3105e
@ -5,8 +5,8 @@ struct ΡΛ
|
|||||||
end
|
end
|
||||||
|
|
||||||
function Base.getindex(rl::ΡΛ, i::Integer, j::Integer)
|
function Base.getindex(rl::ΡΛ, i::Integer, j::Integer)
|
||||||
@assert 1 ≤ i ≤ rl.N
|
@assert 1 ≤ i ≤ rl.N "Got $i > $(rl.N)"
|
||||||
@assert 1 ≤ j ≤ rl.N
|
@assert 1 ≤ j ≤ rl.N "Got $j > $(rl.N)"
|
||||||
@assert i ≠ j
|
@assert i ≠ j
|
||||||
@assert rl.id ∈ (:λ, :ϱ)
|
@assert rl.id ∈ (:λ, :ϱ)
|
||||||
rl.id == :λ && return Word([rl.A[λ(i, j)]])
|
rl.id == :λ && return Word([rl.A[λ(i, j)]])
|
||||||
@ -19,11 +19,16 @@ function Te_diagonal(λ::Groups.ΡΛ, ϱ::Groups.ΡΛ, i::Integer)
|
|||||||
|
|
||||||
N = λ.N
|
N = λ.N
|
||||||
@assert iseven(N)
|
@assert iseven(N)
|
||||||
|
A = λ.A
|
||||||
n = N ÷ 2
|
n = N ÷ 2
|
||||||
j = i + 1
|
j = i + 1
|
||||||
@assert 1 <= i < n
|
|
||||||
|
|
||||||
A = λ.A
|
if i == n
|
||||||
|
τ = rotation_element(λ, ϱ)
|
||||||
|
return inv(A, τ) * Te_diagonal(λ, ϱ, 1) * τ
|
||||||
|
end
|
||||||
|
|
||||||
|
@assert 1 <= i < n
|
||||||
|
|
||||||
NI = (2n - 2i) + 1
|
NI = (2n - 2i) + 1
|
||||||
NJ = (2n - 2j) + 1
|
NJ = (2n - 2j) + 1
|
||||||
@ -44,43 +49,104 @@ end
|
|||||||
|
|
||||||
function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
|
function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
|
||||||
a₀ = (a₁ * a₂ * a₃)^4 * inv(A, b₀)
|
a₀ = (a₁ * a₂ * a₃)^4 * inv(A, b₀)
|
||||||
X = a₄ * a₅ * a₃ * a₄
|
X = a₄ * a₅ * a₃ * a₄ # from Primer
|
||||||
b₁ = inv(A, X) * a₀ * X
|
b₁ = inv(A, X) * a₀ * X # from Primer
|
||||||
Y = a₂ * a₃ * a₁ * a₂
|
Y = a₂ * a₃ * a₁ * a₂
|
||||||
return inv(A, Y) * b₁ * Y # b₂
|
return inv(A, Y) * b₁ * Y # b₂ from Primer
|
||||||
end
|
end
|
||||||
|
|
||||||
Ta(λ::Groups.ΡΛ, i::Integer) = (@assert λ.id == :λ; λ[λ.N-2i+1, λ.N-2i+2])
|
function Ta(λ::Groups.ΡΛ, i::Integer)
|
||||||
|
@assert λ.id == :λ;
|
||||||
Tα(λ::Groups.ΡΛ, i::Integer) = (@assert λ.id == :λ; inv(λ.A, λ[λ.N-2i+2, λ.N-2i+1]))
|
return λ[mod1(λ.N-2i+1, λ.N), mod1(λ.N-2i+2, λ.N)]
|
||||||
|
end
|
||||||
|
|
||||||
|
function Tα(λ::Groups.ΡΛ, i::Integer)
|
||||||
|
@assert λ.id == :λ;
|
||||||
|
return inv(λ.A, λ[mod1(λ.N-2i+2, λ.N), mod1(λ.N-2i+1, λ.N)])
|
||||||
|
end
|
||||||
|
|
||||||
function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
||||||
@assert i ≠ j
|
@assert i ≠ j
|
||||||
i, j = i < j ? (i, j) : (j, i)
|
|
||||||
|
|
||||||
@assert λ.N == ϱ.N
|
@assert λ.N == ϱ.N
|
||||||
@assert λ.A == ϱ.A
|
@assert λ.A == ϱ.A
|
||||||
@assert λ.id == :λ && ϱ.id == :ϱ
|
@assert λ.id == :λ && ϱ.id == :ϱ
|
||||||
|
|
||||||
|
@assert iseven(λ.N)
|
||||||
|
genus = λ.N÷2
|
||||||
|
i = mod1(i, genus)
|
||||||
|
j = mod1(j, genus)
|
||||||
|
|
||||||
@assert 1 ≤ i ≤ λ.N
|
@assert 1 ≤ i ≤ λ.N
|
||||||
@assert 1 ≤ j ≤ λ.N
|
@assert 1 ≤ j ≤ λ.N
|
||||||
|
|
||||||
if j == i + 1
|
A = λ.A
|
||||||
|
|
||||||
|
if mod(j - (i + 1), genus) == 0
|
||||||
return Te_diagonal(λ, ϱ, i)
|
return Te_diagonal(λ, ϱ, i)
|
||||||
else
|
else
|
||||||
return Te_lantern(
|
return inv(A, Te_lantern(
|
||||||
λ.A,
|
A,
|
||||||
Ta(λ, i + 1),
|
# Our notation: # Primer notation:
|
||||||
Ta(λ, i),
|
inv(A, Ta(λ, i + 1)), # b₀
|
||||||
Tα(λ, i),
|
inv(A, Ta(λ, i)), # a₁
|
||||||
Te(λ, ϱ, i, i + 1),
|
inv(A, Tα(λ, i)), # a₂
|
||||||
Tα(λ, i + 1),
|
inv(A, Te_diagonal(λ, ϱ, i)), # a₃
|
||||||
Te(λ, ϱ, i + 1, j),
|
inv(A, Tα(λ, i + 1)), # a₄
|
||||||
)
|
inv(A, Te(λ, ϱ, i + 1, j)), # a₅
|
||||||
|
))
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
|
|
||||||
|
"""
|
||||||
|
rotation_element(G::AutomorphismGroup{<:FreeGroup})
|
||||||
|
Return the element of `G` which corresponds to shifting generators of the free group.
|
||||||
|
|
||||||
|
In the corresponding mapping class group this element acts by rotation of the surface anti-clockwise.
|
||||||
|
"""
|
||||||
|
function rotation_element(G::AutomorphismGroup{<:FreeGroup})
|
||||||
|
|
||||||
|
A = alphabet(G)
|
||||||
|
@assert iseven(ngens(object(G)))
|
||||||
|
genus = ngens(object(G)) ÷ 2
|
||||||
|
|
||||||
|
λ = ΡΛ(:λ, A, 2genus)
|
||||||
|
ϱ = ΡΛ(:ϱ, A, 2genus)
|
||||||
|
|
||||||
|
return G(rotation_element(λ, ϱ))
|
||||||
|
end
|
||||||
|
|
||||||
|
function rotation_element(λ::ΡΛ, ϱ::ΡΛ)
|
||||||
|
@assert iseven(λ.N)
|
||||||
|
genus = λ.N÷2
|
||||||
|
A = λ.A
|
||||||
|
|
||||||
|
halftwists = map(1:genus-1) do i
|
||||||
|
j = i + 1
|
||||||
|
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te_diagonal(λ, ϱ, i)
|
||||||
|
δ = x * Tα(λ, i) * inv(A, x)
|
||||||
|
c =
|
||||||
|
inv(A, Ta(λ, j)) *
|
||||||
|
Te(λ, ϱ, i, j) *
|
||||||
|
Tα(λ, i)^2 *
|
||||||
|
inv(A, δ) *
|
||||||
|
inv(A, Ta(λ, j)) *
|
||||||
|
Ta(λ, i) *
|
||||||
|
δ
|
||||||
|
z =
|
||||||
|
Te_diagonal(λ, ϱ, i) *
|
||||||
|
inv(A, Ta(λ, i)) *
|
||||||
|
Tα(λ, i) *
|
||||||
|
Ta(λ, i) *
|
||||||
|
inv(A, Te_diagonal(λ, ϱ, i))
|
||||||
|
|
||||||
|
Ta(λ, i) * inv(A, Ta(λ, j) * Tα(λ, j))^6 * (Ta(λ, j) * Tα(λ, j) * z)^4 * c
|
||||||
|
end
|
||||||
|
|
||||||
|
τ = (Ta(λ, 1) * Tα(λ, 1))^6 * prod(halftwists)
|
||||||
|
return τ
|
||||||
|
end
|
||||||
|
|
||||||
function mcg_twists(G::AutomorphismGroup{<:FreeGroup})
|
function mcg_twists(G::AutomorphismGroup{<:FreeGroup})
|
||||||
|
|
||||||
@assert iseven(ngens(object(G)))
|
@assert iseven(ngens(object(G)))
|
||||||
|
Loading…
Reference in New Issue
Block a user