1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-12-25 02:05:30 +01:00

remove new_types.jl again

This commit is contained in:
Marek Kaluba 2021-07-20 10:39:21 +02:00
parent 3235b00959
commit 6b354d449b
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15

View File

@ -1,206 +0,0 @@
using GroupsCore
# using Groups
# import Groups.AbstractFPGroup
import KnuthBendix
import KnuthBendix: AbstractWord, Alphabet, Word, RewritingSystem
import KnuthBendix: alphabet
using Random
## "Abstract" definitions
"""
AbstractFPGroup
An Abstract type representing finitely presented groups. Every instance `` must implement
* `KnuthBendix.alphabet(G::MyFPGroup)`
* `rewriting(G::MyFPGroup)` : return the rewriting object which must implement
> `KnuthBendix.rewrite_from_left!(u, v, rewriting(G))`.
By default `alphabet(G)` is returned, which amounts to free rewriting in `G`.
* `relations(G::MyFPGroup)` : return a set of defining relations.
AbstractFPGroup may also override `word_type(::Type{MyFPGroup}) = Word{UInt16}`,
which controls the word type used for group elements. If a group has more than `255` generators you need to define e.g.
> `word_type(::Type{MyFPGroup}) = Word{UInt16}`
"""
abstract type AbstractFPGroup <: GroupsCore.Group end
word_type(G::AbstractFPGroup) = word_type(typeof(G))
# the default:
word_type(::Type{<:AbstractFPGroup}) = Word{UInt8}
# the default (results in free rewriting)
rewriting(G::AbstractFPGroup) = alphabet(G)
Base.@propagate_inbounds function (G::AbstractFPGroup)(word::AbstractVector{<:Integer})
@boundscheck @assert all(l -> 1 <= l <= length(KnuthBendix.alphabet(G)), word)
return FPGroupElement(word_type(G)(word), G)
end
function Base.show(io::IO, G::AbstractFPGroup)
print(io, "")
join(io, gens(G), ", ")
print(io, " | ")
join(io, relations(G), ", ")
print(io, "")
end
## Group Interface
Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G)
Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} = FPGroupElement{FPG,word_type(FPG)}
include("iteration.jl")
GroupsCore.ngens(G::AbstractFPGroup) = length(G.gens)
function GroupsCore.gens(G::AbstractFPGroup, i::Integer)
@boundscheck 1 <= i <= GroupsCore.ngens(G)
l = alphabet(G)[G.gens[i]]
return FPGroupElement(word_type(G)([l]), G)
end
GroupsCore.gens(G::AbstractFPGroup) = [gens(G, i) for i in 1:GroupsCore.ngens(G)]
# TODO: ProductReplacementAlgorithm
function Base.rand(rng::Random.AbstractRNG, rs::Random.SamplerTrivial{<:AbstractFPGroup})
l = rand(10:100)
G = rs[]
nletters = length(alphabet(G))
return FPGroupElement(word_type(G)(rand(1:nletters, l)), G)
end
Base.isfinite(::AbstractFPGroup) = (@warn "using generic isfinite(::AbstractFPGroup): the returned `false` might be wrong"; false)
## FPGroupElement
mutable struct FPGroupElement{G<:AbstractFPGroup,W<:AbstractWord} <: GroupElement
word::W
savedhash::UInt
parent::G
FPGroupElement(word::W, G::AbstractFPGroup) where {W<:AbstractWord} =
new{typeof(G),W}(word, UInt(0), G)
FPGroupElement(word::W, hash::UInt, G::AbstractFPGroup) where {W<:AbstractWord} =
new{typeof(G),W}(word, hash, G)
end
word(f::FPGroupElement) = f.word
#convenience
KnuthBendix.alphabet(g::FPGroupElement) = alphabet(parent(g))
function Base.show(io::IO, f::FPGroupElement)
f = normalform!(f)
KnuthBendix.print_repr(io, word(f), alphabet(f))
end
## GroupElement Interface for FPGroupElement
Base.parent(f::FPGroupElement) = f.parent
GroupsCore.parent_type(::Type{<:FPGroupElement{G}}) where {G} = G
function Base.:(==)(g::FPGroupElement, h::FPGroupElement)
@boundscheck @assert parent(g) === parent(h)
normalform!(g)
normalform!(h)
hash(g) != hash(h) && return false
return word(g) == word(h)
end
function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict)
return FPGroupElement(copy(word(g)), g.savedhash, parent(g))
end
Base.inv(g::FPGroupElement) = (G = parent(g); FPGroupElement(inv(alphabet(G), word(g)), G))
function Base.:(*)(g::FPGroupElement, h::FPGroupElement)
@boundscheck @assert parent(g) === parent(h)
return FPGroupElement(word(g) * word(h), parent(g))
end
GroupsCore.isfiniteorder(g::FPGroupElement) = isone(g) ? true : (@warn "using generic isfiniteorder(::FPGroupElement): the returned `false` might be wrong"; false)
# additional methods:
Base.isone(g::FPGroupElement) = (normalform!(g); isempty(word(g)))
## Free Groups
struct FreeGroup{T} <: AbstractFPGroup
gens::Vector{T}
alphabet::KnuthBendix.Alphabet{T}
function FreeGroup(gens, A::KnuthBendix.Alphabet) where {W}
@assert length(gens) == length(unique(gens))
@assert all(l -> l in KnuthBendix.letters(A), gens)
return new{eltype(gens)}(gens, A)
end
end
function FreeGroup(A::Alphabet)
@boundscheck @assert all(KnuthBendix.hasinverse(l, A) for l in KnuthBendix.letters(A))
return FreeGroup(KnuthBendix.letters(A), A)
end
function FreeGroup(n::Integer)
symbols = Symbol[]
inverses = Int[]
sizehint!(symbols, 2n)
sizehint!(inverses, 2n)
for i in 1:n
push!(symbols, Symbol(:f, subscriptify(i)), Symbol(:F, subscriptify(i)))
push!(inverses, 2i, 2i-1)
end
return FreeGroup(symbols[1:2:2n], Alphabet(symbols, inverses))
end
Base.show(io::IO, F::FreeGroup) = print(io, "free group on $(ngens(F)) generators")
# mandatory methods:
KnuthBendix.alphabet(F::FreeGroup) = F.alphabet
relations(F::FreeGroup) = Pair{eltype(F)}[]
# GroupsCore interface:
# these are mathematically correct
Base.isfinite(::FreeGroup) = false
GroupsCore.isfiniteorder(g::FPGroupElement{<:FreeGroup}) = isone(g) ? true : false
## FP Groups
struct FPGroup{T,R,S} <: AbstractFPGroup
gens::Vector{T}
relations::Vector{Pair{S,S}}
rws::R
end
KnuthBendix.alphabet(G::FPGroup) = alphabet(rewriting(G))
rewriting(G::FPGroup) = G.rws
relations(G::FPGroup) = G.relations
function FPGroup(
G::AbstractFPGroup,
rels::AbstractVector{<:Pair{GEl,GEl}};
ordering = KnuthBendix.LenLex,
kwargs...,
) where {GEl<:FPGroupElement}
O = ordering(alphabet(G))
for (lhs, rhs) in rels
@assert parent(lhs) === parent(rhs) === G
end
word_rels = [word(lhs) => word(rhs) for (lhs, rhs) in [relations(G); rels]]
rws = RewritingSystem(word_rels, O)
KnuthBendix.knuthbendix!(rws; kwargs...)
return FPGroup(G.gens, rels, rws)
end
## GSymbol aka letter of alphabet
abstract type GSymbol end
Base.literal_pow(::typeof(^), t::GSymbol, ::Val{-1}) = inv(t)
subscriptify(i::Integer) = join('₀'+d for d in reverse(digits(i)))