mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-12 22:22:32 +01:00
commit
752787b3ad
@ -6,6 +6,8 @@ os:
|
||||
julia:
|
||||
- 1.0
|
||||
- 1.1
|
||||
- 1.2
|
||||
- 1.3
|
||||
- nightly
|
||||
notifications:
|
||||
email: true
|
||||
@ -19,7 +21,3 @@ matrix:
|
||||
# - julia -e 'Pkg.clone(pwd()); Pkg.build("Groups"); Pkg.test("Groups"; coverage=true)'
|
||||
|
||||
codecov: true
|
||||
|
||||
# after_success:
|
||||
# push coverage results to Coveralls
|
||||
#- julia -e 'using Pkg; Pkg.build(); Pkg.test(coverage=true);'
|
||||
|
@ -1,7 +1,7 @@
|
||||
name = "Groups"
|
||||
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
|
||||
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
|
||||
version = "0.2.2"
|
||||
version = "0.2.3"
|
||||
|
||||
[deps]
|
||||
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
|
||||
@ -13,3 +13,6 @@ Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
|
||||
|
||||
[targets]
|
||||
test = ["Test"]
|
||||
|
||||
[compat]
|
||||
AbstractAlgebra = "^0.7.0"
|
||||
|
@ -19,7 +19,7 @@ struct FlipAut
|
||||
end
|
||||
|
||||
struct PermAut
|
||||
perm::Generic.perm{Int8}
|
||||
perm::Generic.Perm{Int8}
|
||||
end
|
||||
|
||||
struct Identity end
|
||||
@ -130,7 +130,7 @@ function flip_autsymbol(i::Integer; pow::Integer=1)
|
||||
end
|
||||
end
|
||||
|
||||
function perm_autsymbol(p::Generic.perm{I}; pow::Integer=one(I)) where I<:Integer
|
||||
function perm_autsymbol(p::Generic.Perm{I}; pow::Integer=one(I)) where I<:Integer
|
||||
if pow != 1
|
||||
p = p^pow
|
||||
end
|
||||
@ -143,8 +143,8 @@ function perm_autsymbol(p::Generic.perm{I}; pow::Integer=one(I)) where I<:Intege
|
||||
return id_autsymbol()
|
||||
end
|
||||
|
||||
function perm_autsymbol(a::Vector{T}) where T<:Integer
|
||||
return perm_autsymbol(perm(Vector{Int8}(a), false))
|
||||
function perm_autsymbol(a::Vector{<:Integer})
|
||||
return perm_autsymbol(Generic.Perm(Vector{Int8}(a), false))
|
||||
end
|
||||
|
||||
function domain(G::AutGroup{N}) where N
|
||||
|
@ -1,100 +1,4 @@
|
||||
export DirectPowerGroup, DirectPowerGroupElem
|
||||
export MultiplicativeGroup, MltGrp, MltGrpElem
|
||||
export AdditiveGroup, AddGrp, AddGrpElem
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# MltGrp/MltGrpElem & AddGrp/AddGrpElem
|
||||
# (a thin wrapper for multiplicative/additive group of a Ring)
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
for (Gr, Elem) in [(:MltGrp, :MltGrpElem), (:AddGrp, :AddGrpElem)]
|
||||
@eval begin
|
||||
struct $Gr{T<:AbstractAlgebra.Ring} <: AbstractAlgebra.Group
|
||||
obj::T
|
||||
end
|
||||
|
||||
struct $Elem{T<:AbstractAlgebra.RingElem} <: AbstractAlgebra.GroupElem
|
||||
elt::T
|
||||
end
|
||||
|
||||
==(g::$Elem, h::$Elem) = g.elt == h.elt
|
||||
==(G::$Gr, H::$Gr) = G.obj == H.obj
|
||||
|
||||
elem_type(::Type{$Gr{T}}) where T = $Elem{elem_type(T)}
|
||||
eltype(::Type{$Gr{T}}) where T = $Elem{elem_type(T)}
|
||||
parent_type(::Type{$Elem{T}}) where T = $Gr{parent_type(T)}
|
||||
parent(g::$Elem) = $Gr(parent(g.elt))
|
||||
length(G::$Gr{<:AbstractAlgebra.Ring}) = order(G.obj)
|
||||
end
|
||||
end
|
||||
|
||||
MultiplicativeGroup = MltGrp
|
||||
AdditiveGroup = AddGrp
|
||||
|
||||
(G::MltGrp)(g::MltGrpElem) = MltGrpElem(G.obj(g.elt))
|
||||
|
||||
function (G::MltGrp)(g)
|
||||
r = (G.obj)(g)
|
||||
isunit(r) || throw(DomainError(
|
||||
"Cannot coerce to multplicative group: $r is not invertible!"))
|
||||
return MltGrpElem(r)
|
||||
end
|
||||
|
||||
(G::AddGrp)(g) = AddGrpElem((G.obj)(g))
|
||||
|
||||
(G::MltGrp)() = MltGrpElem(G.obj(1))
|
||||
(G::AddGrp)() = AddGrpElem(G.obj())
|
||||
|
||||
inv(g::MltGrpElem) = MltGrpElem(inv(g.elt))
|
||||
inv(g::AddGrpElem) = AddGrpElem(-g.elt)
|
||||
|
||||
for (Elem, op) in ([:MltGrpElem, :*], [:AddGrpElem, :+])
|
||||
@eval begin
|
||||
|
||||
^(g::$Elem, n::Integer) = $Elem(op(g.elt, n))
|
||||
|
||||
function *(g::$Elem, h::$Elem)
|
||||
parent(g) == parent(h) || throw(DomainError(
|
||||
"Cannot multiply elements of different parents"))
|
||||
return $Elem($op(g.elt,h.elt))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
show(io::IO, G::MltGrp) = print(io, "The multiplicative group of $(G.obj)")
|
||||
show(io::IO, G::AddGrp) = print(io, "The additive group of $(G.obj)")
|
||||
|
||||
show(io::IO, g::Union{MltGrpElem, AddGrpElem}) = show(io, g.elt)
|
||||
|
||||
gens(F::AbstractAlgebra.Field) = elem_type(F)[gen(F)]
|
||||
|
||||
order(G::AddGrp{<:AbstractAlgebra.GFField}) = order(G.obj)
|
||||
|
||||
order(G::MltGrp{<:AbstractAlgebra.GFField}) = order(G.obj) - 1
|
||||
|
||||
|
||||
function iterate(G::AddGrp, s=0)
|
||||
if s >= order(G)
|
||||
return nothing
|
||||
else
|
||||
g, s = iterate(G.obj,s)
|
||||
return G(g), s
|
||||
end
|
||||
end
|
||||
|
||||
function iterate(G::MltGrp, s=0)
|
||||
if s > order(G)
|
||||
return nothing
|
||||
else
|
||||
g, s = iterate(G.obj, s)
|
||||
if g == G.obj()
|
||||
g, s = iterate(G.obj, s)
|
||||
end
|
||||
return G(g), s
|
||||
end
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
|
@ -29,12 +29,12 @@ struct WreathProduct{N, T<:Group, PG<:Generic.PermGroup} <: Group
|
||||
end
|
||||
end
|
||||
|
||||
struct WreathProductElem{N, T<:GroupElem, P<:Generic.perm} <: GroupElem
|
||||
struct WreathProductElem{N, T<:GroupElem, P<:Generic.Perm} <: GroupElem
|
||||
n::DirectPowerGroupElem{N, T}
|
||||
p::P
|
||||
|
||||
function WreathProductElem(n::DirectPowerGroupElem{N,T}, p::P,
|
||||
check::Bool=true) where {N, T, P<:Generic.perm}
|
||||
check::Bool=true) where {N, T, P<:Generic.Perm}
|
||||
if check
|
||||
N == length(p.d) || throw(DomainError(
|
||||
"Can't form WreathProductElem: lengths differ"))
|
||||
@ -69,19 +69,19 @@ function (G::WreathProduct{N})(g::WreathProductElem{N}) where {N}
|
||||
end
|
||||
|
||||
@doc doc"""
|
||||
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.perm)
|
||||
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm)
|
||||
> Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and
|
||||
> `G.P`, respectively.
|
||||
"""
|
||||
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.perm) = WreathProductElem(n,p)
|
||||
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm) = WreathProductElem(n,p)
|
||||
|
||||
(G::WreathProduct)() = WreathProductElem(G.N(), G.P(), false)
|
||||
|
||||
@doc doc"""
|
||||
(G::WreathProduct)(p::Generic.perm)
|
||||
(G::WreathProduct)(p::Generic.Perm)
|
||||
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
|
||||
"""
|
||||
(G::WreathProduct)(p::Generic.perm) = G(G.N(), p)
|
||||
(G::WreathProduct)(p::Generic.Perm) = G(G.N(), p)
|
||||
|
||||
@doc doc"""
|
||||
(G::WreathProduct)(n::DirectPowerGroupElem)
|
||||
@ -144,7 +144,7 @@ end
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
(p::perm)(n::DirectPowerGroupElem) = DirectPowerGroupElem(n.elts[p.d])
|
||||
(p::Generic.Perm)(n::DirectPowerGroupElem) = DirectPowerGroupElem(n.elts[p.d])
|
||||
|
||||
@doc doc"""
|
||||
*(g::WreathProductElem, h::WreathProductElem)
|
||||
@ -152,7 +152,7 @@ end
|
||||
>
|
||||
> `g*h = (g.n*g.p(h.n), g.p*h.p)`,
|
||||
>
|
||||
> where `g.p(h.n)` denotes the action of `g.p::Generic.perm` on
|
||||
> where `g.p(h.n)` denotes the action of `g.p::Generic.Perm` on
|
||||
> `h.n::DirectPowerGroupElem` via standard permutation of coordinates.
|
||||
"""
|
||||
function *(g::WreathProductElem, h::WreathProductElem)
|
||||
@ -188,7 +188,7 @@ end
|
||||
function iterate(G::WreathProduct, state)
|
||||
state_N, p, state_P = state
|
||||
res = iterate(G.N, state_N)
|
||||
|
||||
|
||||
if res == nothing
|
||||
resP = iterate(G.P, state_P)
|
||||
if resP == nothing
|
||||
@ -200,7 +200,7 @@ function iterate(G::WreathProduct, state)
|
||||
else
|
||||
n, state_N = res
|
||||
end
|
||||
|
||||
|
||||
return G(n,p), (state_N, p, state_P)
|
||||
end
|
||||
|
||||
|
@ -23,7 +23,7 @@
|
||||
g = perm"(1,2,3)"
|
||||
|
||||
@test GG(g, g^2) isa GroupElem
|
||||
@test GG(g, g^2) isa Groups.DirectPowerGroupElem{2, Generic.perm{Int64}}
|
||||
@test GG(g, g^2) isa Groups.DirectPowerGroupElem{2, Generic.Perm{Int64}}
|
||||
|
||||
h = GG(g,g^2)
|
||||
|
||||
@ -46,7 +46,7 @@
|
||||
GG = G×G
|
||||
i = perm"(1,3)"
|
||||
g = perm"(1,2,3)"
|
||||
|
||||
|
||||
h = GG(g,g^2)
|
||||
k = GG(g^3, g^2)
|
||||
|
||||
@ -57,7 +57,7 @@
|
||||
@test h*k == GG(g,g)
|
||||
|
||||
@test h*inv(h) == (G×G)()
|
||||
|
||||
|
||||
w = GG(g,i)*GG(i,g)
|
||||
@test w == GG(perm"(1,2)(3)", perm"(2,3)")
|
||||
@test w == inv(w)
|
||||
@ -72,129 +72,9 @@
|
||||
@test elem_type(G×G×G) == DirectPowerGroupElem{3, elem_type(G)}
|
||||
@test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectPowerGroup{2, typeof(G)}
|
||||
@test parent(DirectPowerGroupElem((g,g^2,g^3))) == DirectPowerGroup(G,3)
|
||||
|
||||
F = AdditiveGroup(GF(13))
|
||||
|
||||
@test elem_type(F×F) ==
|
||||
DirectPowerGroupElem{2, Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}}
|
||||
@test parent_type(typeof((F×F)(1,5))) ==
|
||||
Groups.DirectPowerGroup{2, Groups.AddGrp{AbstractAlgebra.GFField{Int}}}
|
||||
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
|
||||
|
||||
F = MultiplicativeGroup(GF(13))
|
||||
|
||||
@test elem_type(F×F) ==
|
||||
DirectPowerGroupElem{2, Groups.MltGrpElem{AbstractAlgebra.gfelem{Int}}}
|
||||
@test parent_type(typeof((F×F)(1,5))) ==
|
||||
Groups.DirectPowerGroup{2, Groups.MltGrp{AbstractAlgebra.GFField{Int}}}
|
||||
parent((F×F)(1,5)) == DirectPowerGroup(F,2)
|
||||
end
|
||||
|
||||
@testset "Additive/Multiplicative groups" begin
|
||||
|
||||
R, x = PolynomialRing(QQ, "x")
|
||||
F, a = NumberField(x^3 + x + 1, "a")
|
||||
G = PermutationGroup(3)
|
||||
|
||||
@testset "MltGrp basic functionality" begin
|
||||
Gr = MltGrp(F)
|
||||
@test Gr(a) isa MltGrpElem
|
||||
g = Gr(a)
|
||||
@test deepcopy(g) isa MltGrpElem
|
||||
@test inv(g) == Gr(a^-1)
|
||||
@test Gr() == Gr(1)
|
||||
@test inv(g)*g == Gr()
|
||||
end
|
||||
|
||||
@testset "AddGrp basic functionality" begin
|
||||
Gr = AddGrp(F)
|
||||
@test Gr(a) isa AddGrpElem
|
||||
g = Gr(a)
|
||||
@test deepcopy(g) isa AddGrpElem
|
||||
@test inv(g) == Gr(-a)
|
||||
@test Gr() == Gr(0)
|
||||
@test inv(g)*g == Gr()
|
||||
end
|
||||
end
|
||||
|
||||
@testset "Direct Product of Multiplicative Groups" begin
|
||||
|
||||
R, x = PolynomialRing(QQ, "x")
|
||||
F, a = NumberField(x^3 + x + 1, "a")
|
||||
FF = Groups.DirectPowerGroup(MltGrp(F),2)
|
||||
|
||||
@test FF([a,1]) isa GroupElem
|
||||
@test FF([a,1]) isa DirectPowerGroupElem
|
||||
@test FF([a,1]) isa DirectPowerGroupElem{2, MltGrpElem{elem_type(F)}}
|
||||
@test_throws DomainError FF(1,0)
|
||||
@test_throws DomainError FF([0,1])
|
||||
@test_throws DomainError FF([1,0])
|
||||
|
||||
@test MltGrp(F) isa AbstractAlgebra.Group
|
||||
@test MltGrp(F) isa MultiplicativeGroup
|
||||
@test DirectPowerGroup(MltGrp(F), 2) isa AbstractAlgebra.Group
|
||||
@test DirectPowerGroup(MltGrp(F), 2) isa DirectPowerGroup{2, MltGrp{typeof(F)}}
|
||||
|
||||
F, a = NumberField(x^3 + x + 1, "a")
|
||||
FF = DirectPowerGroup(MltGrp(F), 2)
|
||||
|
||||
@test FF(a,a+1) == FF([a,a+1])
|
||||
@test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a)
|
||||
x, y = FF([1,a]), FF([a^2,1])
|
||||
@test x*y == FF([a^2, a])
|
||||
@test inv(x) == FF([1,-a^2-1])
|
||||
|
||||
@test parent(x) == FF
|
||||
end
|
||||
|
||||
@testset "Direct Product of Additive Groups" begin
|
||||
|
||||
R, x = PolynomialRing(QQ, "x")
|
||||
F, a = NumberField(x^3 + x + 1, "a")
|
||||
|
||||
# Additive Group
|
||||
@test AddGrp(F) isa AbstractAlgebra.Group
|
||||
@test AddGrp(F) isa AdditiveGroup
|
||||
@test DirectPowerGroup(AddGrp(F), 2) isa AbstractAlgebra.Group
|
||||
@test DirectPowerGroup(AddGrp(F), 2) isa DirectPowerGroup{2, AddGrp{typeof(F)}}
|
||||
|
||||
FF = DirectPowerGroup(AdditiveGroup(F), 2)
|
||||
|
||||
@test FF([0,a]) isa AbstractAlgebra.GroupElem
|
||||
@test FF(F(0),a) isa DirectPowerGroupElem
|
||||
@test FF(0,0) isa DirectPowerGroupElem{2, AddGrpElem{elem_type(F)}}
|
||||
|
||||
@test FF(F(1),a+1) == FF([1,a+1])
|
||||
|
||||
@test FF([F(1),a+1])*FF([a,a]) == FF(1+a,2a+1)
|
||||
|
||||
x, y = FF([1,a]), FF([a^2,1])
|
||||
@test x*y == FF(a^2+1, a+1)
|
||||
@test inv(x) == FF([F(-1),-a])
|
||||
|
||||
@test parent(x) == FF
|
||||
end
|
||||
|
||||
@testset "Misc" begin
|
||||
F = GF(5)
|
||||
|
||||
FF = DirectPowerGroup(AdditiveGroup(F),2)
|
||||
@test order(FF) == 25
|
||||
|
||||
elts = vec(collect(FF))
|
||||
@test length(elts) == 25
|
||||
@test all([g*inv(g) == FF() for g in elts])
|
||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||
|
||||
FF = DirectPowerGroup(MultiplicativeGroup(F), 3)
|
||||
@test order(FF) == 64
|
||||
|
||||
elts = vec(collect(FF))
|
||||
@test length(elts) == 64
|
||||
@test all([g*inv(g) == FF() for g in elts])
|
||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||
|
||||
|
||||
G = PermutationGroup(3)
|
||||
GG = Groups.DirectPowerGroup(G,3)
|
||||
@test order(GG) == 216
|
||||
|
@ -15,8 +15,8 @@
|
||||
@test Groups.WreathProductElem(aa, b) isa AbstractAlgebra.GroupElem
|
||||
x = Groups.WreathProductElem(aa, b)
|
||||
@test x isa Groups.WreathProductElem
|
||||
@test x isa
|
||||
Groups.WreathProductElem{3, perm{Int}, perm{Int}}
|
||||
@test x isa
|
||||
Groups.WreathProductElem{3, Generic.Perm{Int}, Generic.Perm{Int}}
|
||||
|
||||
@test B3.N == Groups.DirectPowerGroup(S_2, 3)
|
||||
@test B3.P == S_3
|
||||
@ -35,7 +35,7 @@
|
||||
@testset "Types" begin
|
||||
B3 = Groups.WreathProduct(S_2, S_3)
|
||||
|
||||
@test elem_type(B3) == Groups.WreathProductElem{3, perm{Int}, perm{Int}}
|
||||
@test elem_type(B3) == Groups.WreathProductElem{3, Generic.Perm{Int}, Generic.Perm{Int}}
|
||||
|
||||
@test parent_type(typeof(B3())) == Groups.WreathProduct{3, parent_type(typeof(B3.N.group())), Generic.PermGroup{Int}}
|
||||
|
||||
@ -64,62 +64,35 @@
|
||||
end
|
||||
|
||||
@testset "Group arithmetic" begin
|
||||
B4 = Groups.WreathProduct(AdditiveGroup(GF(3)), PermutationGroup(4))
|
||||
B4 = Groups.WreathProduct(PermutationGroup(3), PermutationGroup(4))
|
||||
|
||||
x = B4((0,1,2,0), perm"(1,2,3)(4)")
|
||||
@test inv(x) == B4((1,0,2,0), perm"(1,3,2)(4)")
|
||||
id, a, b = perm"(3)", perm"(1,2)(3)", perm"(1,2,3)"
|
||||
|
||||
y = B4((1,0,1,2), perm"(1,4)(2,3)")
|
||||
@test inv(y) == B4((1,2,0,2), perm"(1,4)(2,3)")
|
||||
x = B4((id,a,b,id), perm"(1,2,3)(4)")
|
||||
@test inv(x) == B4((inv(b),id, a,id), perm"(1,3,2)(4)")
|
||||
|
||||
@test x*y == B4((0,2,0,2), perm"(1,3,4)(2)")
|
||||
y = B4((a,id,a,b), perm"(1,4)(2,3)")
|
||||
@test inv(y) == B4((inv(b), a,id, a), perm"(1,4)(2,3)")
|
||||
|
||||
@test y*x == B4((1,2,2,2), perm"(1,4,2)(3)")
|
||||
@test x*y == B4((id,id,b*a,b), perm"(1,3,4)(2)")
|
||||
@test y*x == B4(( a, b, id,b), perm"(1,4,2)(3)")
|
||||
|
||||
@test inv(x)*y == B4((inv(b)*a,a,a,b), perm"(1,2,4)(3)")
|
||||
@test y*inv(x) == B4((a,a,a,id), perm"(1,4,3)(2)")
|
||||
|
||||
@test inv(x)*y == B4((2,1,2,2), perm"(1,2,4)(3)")
|
||||
|
||||
@test y*inv(x) == B4((1,2,1,0), perm"(1,4,3)(2)")
|
||||
|
||||
@test (x*y)^6 == ((x*y)^2)^3
|
||||
|
||||
end
|
||||
|
||||
@testset "Iteration" begin
|
||||
B3_a = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3)
|
||||
@test order(B3_a) == 3^3*6
|
||||
@test collect(B3_a) isa Vector{
|
||||
WreathProductElem{3, AddGrpElem{AbstractAlgebra.gfelem{Int}}, perm{Int}}}
|
||||
|
||||
B3_m = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
|
||||
@test order(B3_m) == 2^3*6
|
||||
@test collect(B3_m) isa Vector{
|
||||
WreathProductElem{3, MltGrpElem{AbstractAlgebra.gfelem{Int}}, perm{Int}}}
|
||||
|
||||
@test length(Set([B3_a, B3_m, B3_a])) == 2
|
||||
|
||||
Wr = WreathProduct(PermutationGroup(2),PermutationGroup(4))
|
||||
|
||||
elts = collect(Wr)
|
||||
@test elts isa Vector{Groups.WreathProductElem{4, perm{Int}, perm{Int}}}
|
||||
@test order(Wr) == 2^4*factorial(4)
|
||||
@test elts isa Vector{Groups.WreathProductElem{4, Generic.Perm{Int}, Generic.Perm{Int}}}
|
||||
@test order(Wr) == 2^4*factorial(4)
|
||||
|
||||
@test length(elts) == order(Wr)
|
||||
@test all([g*inv(g) == Wr() for g in elts])
|
||||
@test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts)
|
||||
end
|
||||
|
||||
@testset "Misc" begin
|
||||
B3_a = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3)
|
||||
@test string(B3_a) == "Wreath Product of The additive group of Finite field F_3 by Permutation group over 3 elements"
|
||||
|
||||
@test string(B3_a(perm"(1,3)")) == "([0,0,0]≀(1,3))"
|
||||
|
||||
B3_m = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3)
|
||||
@test string(B3_m) == "Wreath Product of The multiplicative group of Finite field F_3 by Permutation group over 3 elements"
|
||||
|
||||
@test string(B3_m(perm"(1,3)")) == "([1,1,1]≀(1,3))"
|
||||
|
||||
end
|
||||
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user