1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-07 21:15:28 +01:00

Merge pull request #30 from kalmarek/mk/update_PG_0_4

update to PermutationGroups-0.4
This commit is contained in:
Marek Kaluba 2023-08-26 10:36:37 +02:00 committed by GitHub
commit 866e431c1a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 29 additions and 20 deletions

View File

@ -1,7 +1,7 @@
name = "Groups"
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
version = "0.7.7"
version = "0.7.8"
[deps]
GroupsCore = "d5909c97-4eac-4ecc-a3dc-fdd0858a4120"
@ -17,7 +17,7 @@ StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
GroupsCore = "0.4"
KnuthBendix = "0.4"
OrderedCollections = "1"
PermutationGroups = "0.3"
PermutationGroups = "0.4"
StaticArrays = "1"
julia = "1.6"

View File

@ -1,5 +1,7 @@
import PermutationGroups:
AbstractPermutationGroup, AbstractPerm, degree, SymmetricGroup
AbstractPermutationGroup,
AbstractPermutation,
degree
"""
WreathProduct(G::Group, P::AbstractPermutationGroup) <: Group
@ -27,7 +29,7 @@ end
struct WreathProductElement{
DPEl<:DirectPowerElement,
PEl<:AbstractPerm,
PEl<:AbstractPermutation,
Wr<:WreathProduct,
} <: GroupsCore.GroupElement
n::DPEl
@ -36,7 +38,7 @@ struct WreathProductElement{
function WreathProductElement(
n::DirectPowerElement,
p::AbstractPerm,
p::AbstractPermutation,
W::WreathProduct,
)
return new{typeof(n),typeof(p),typeof(W)}(n, p, W)
@ -53,16 +55,19 @@ function Base.iterate(G::WreathProduct)
itr = Iterators.product(G.N, G.P)
res = iterate(itr)
@assert res !== nothing
elt = WreathProductElement(first(res)..., G)
return elt, (iterator = itr, state = last(res))
ab, st = res
(a, b) = ab
elt = WreathProductElement(a, b, G)
return elt, (itr, st)
end
function Base.iterate(G::WreathProduct, state)
itr, st = state.iterator, state.state
itr, st = state
res = iterate(itr, st)
res === nothing && return nothing
elt = WreathProductElement(first(res)..., G)
return elt, (iterator = itr, state = last(res))
(a::eltype(G.N), b::eltype(G.P)), st = res
elt = WreathProductElement(a, b, G)
return elt, (itr, st)
end
function Base.IteratorSize(::Type{<:WreathProduct{DP,PGr}}) where {DP,PGr}
@ -118,8 +123,11 @@ function Base.deepcopy_internal(g::WreathProductElement, stackdict::IdDict)
)
end
function _act(p::AbstractPerm, n::DirectPowerElement)
return DirectPowerElement(n.elts^p, parent(n))
function _act(p::AbstractPermutation, n::DirectPowerElement)
return DirectPowerElement(
ntuple(i -> n.elts[i^p], length(n.elts)),
parent(n),
)
end
function Base.inv(g::WreathProductElement)

View File

@ -5,7 +5,7 @@
@test contains(sprint(print, π₁Σ), "surface")
Groups.PermRightAut(p::Perm) = Groups.PermRightAut(p.d)
Groups.PermRightAut(p::Perm) = Groups.PermRightAut([i^p for i in 1:2genus])
# Groups.PermLeftAut(p::Perm) = Groups.PermLeftAut(p.d)
autπ₁Σ = let autπ₁Σ = AutomorphismGroup(π₁Σ)
pauts = let p = perm"(1,3,5)(2,4,6)"
@ -50,8 +50,9 @@
@test π₁Σ.(word.(z)) == Groups.domain(first(S))
d = Groups.domain(first(S))
p = perm"(1,3,5)(2,4,6)"
@test Groups.evaluate!(deepcopy(d), τ) == d^inv(p)
@test Groups.evaluate!(deepcopy(d), τ^2) == d^p
@test Groups.evaluate!(deepcopy(d), τ) ==
ntuple(i -> d[i^inv(p)], length(d))
@test Groups.evaluate!(deepcopy(d), τ^2) == ntuple(i -> d[i^p], length(d))
E, sizes = Groups.wlmetric_ball(S, radius=3)
@test sizes == [49, 1813, 62971]

View File

@ -1,9 +1,10 @@
@testset "GroupConstructions" begin
symmetric_group(n) = PermGroup(perm"(1,2)", Perm([2:n; 1]))
@testset "DirectProduct" begin
GH =
let G = PermutationGroups.SymmetricGroup(3),
H = PermutationGroups.SymmetricGroup(4)
let G = symmetric_group(3), H = symmetric_group(4)
Groups.Constructions.DirectProduct(G, H)
end
@ -17,7 +18,7 @@
@testset "DirectPower" begin
GGG = Groups.Constructions.DirectPower{3}(
PermutationGroups.SymmetricGroup(3),
symmetric_group(3),
)
test_Group_interface(GGG)
test_GroupElement_interface(rand(GGG, 2)...)
@ -28,8 +29,7 @@
end
@testset "WreathProduct" begin
W =
let G = PermutationGroups.SymmetricGroup(2),
P = PermutationGroups.SymmetricGroup(4)
let G = symmetric_group(2), P = symmetric_group(4)
Groups.Constructions.WreathProduct(G, P)
end