mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-12-25 18:15:29 +01:00
get rid of Markdown docstrings
This commit is contained in:
parent
1c659d5216
commit
8923912367
@ -6,7 +6,6 @@ version = "0.4.2"
|
|||||||
[deps]
|
[deps]
|
||||||
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
|
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
|
||||||
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
|
||||||
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
|
|
||||||
|
|
||||||
[compat]
|
[compat]
|
||||||
AbstractAlgebra = "^0.9.0"
|
AbstractAlgebra = "^0.9.0"
|
||||||
|
@ -6,9 +6,9 @@ export DirectPowerGroup, DirectPowerGroupElem
|
|||||||
#
|
#
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
DirectPowerGroup(G::Group, n::Int) <: Group
|
DirectPowerGroup(G::Group, n::Int) <: Group
|
||||||
Implements `n`-fold direct product of `G`. The group operation is
|
Return `n`-fold direct product of `G`. The group operation is
|
||||||
`*` distributed component-wise, with component-wise identity as neutral element.
|
`*` distributed component-wise, with component-wise identity as neutral element.
|
||||||
"""
|
"""
|
||||||
struct DirectPowerGroup{N, T<:Group} <: Group
|
struct DirectPowerGroup{N, T<:Group} <: Group
|
||||||
@ -70,11 +70,11 @@ Base.getindex(g::DirectPowerGroupElem, i::Int) = g.elts[i]
|
|||||||
#
|
#
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
(G::DirectPowerGroup)(a::Vector, check::Bool=true)
|
(G::DirectPowerGroup)(a::Vector, check::Bool=true)
|
||||||
> Constructs element of the $n$-fold direct product group `G` by coercing each
|
Constructs element of the `n`-fold direct product group `G` by coercing each
|
||||||
> element of vector `a` to `G.group`. If `check` flag is set to `false` neither
|
element of vector `a` to `G.group`. If `check` flag is set to `false` neither
|
||||||
> check on the correctness nor coercion is performed.
|
check on the correctness nor coercion is performed.
|
||||||
"""
|
"""
|
||||||
function (G::DirectPowerGroup{N})(a::Vector, check::Bool=true) where N
|
function (G::DirectPowerGroup{N})(a::Vector, check::Bool=true) where N
|
||||||
if check
|
if check
|
||||||
@ -131,20 +131,12 @@ end
|
|||||||
#
|
#
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
@doc doc"""
|
|
||||||
==(g::DirectPowerGroup, h::DirectPowerGroup)
|
|
||||||
> Checks if two direct product groups are the same.
|
|
||||||
"""
|
|
||||||
function (==)(G::DirectPowerGroup{N}, H::DirectPowerGroup{M}) where {N,M}
|
function (==)(G::DirectPowerGroup{N}, H::DirectPowerGroup{M}) where {N,M}
|
||||||
N == M || return false
|
N == M || return false
|
||||||
G.group == H.group || return false
|
G.group == H.group || return false
|
||||||
return true
|
return true
|
||||||
end
|
end
|
||||||
|
|
||||||
@doc doc"""
|
|
||||||
==(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
|
|
||||||
> Checks if two direct product group elements are the same.
|
|
||||||
"""
|
|
||||||
(==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem) = g.elts == h.elts
|
(==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem) = g.elts == h.elts
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
@ -153,11 +145,6 @@ end
|
|||||||
#
|
#
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
@doc doc"""
|
|
||||||
*(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
|
|
||||||
> Return the direct-product group operation of elements, i.e. component-wise
|
|
||||||
> operation as defined by `operations` field of the parent object.
|
|
||||||
"""
|
|
||||||
function *(g::DirectPowerGroupElem{N}, h::DirectPowerGroupElem{N}, check::Bool=true) where N
|
function *(g::DirectPowerGroupElem{N}, h::DirectPowerGroupElem{N}, check::Bool=true) where N
|
||||||
if check
|
if check
|
||||||
parent(g) == parent(h) || throw(DomainError(
|
parent(g) == parent(h) || throw(DomainError(
|
||||||
@ -168,10 +155,6 @@ end
|
|||||||
|
|
||||||
^(g::DirectPowerGroupElem, n::Integer) = Base.power_by_squaring(g, n)
|
^(g::DirectPowerGroupElem, n::Integer) = Base.power_by_squaring(g, n)
|
||||||
|
|
||||||
@doc doc"""
|
|
||||||
inv(g::DirectPowerGroupElem)
|
|
||||||
> Return the inverse of the given element in the direct product group.
|
|
||||||
"""
|
|
||||||
function inv(g::DirectPowerGroupElem{N}) where {N}
|
function inv(g::DirectPowerGroupElem{N}) where {N}
|
||||||
return DirectPowerGroupElem(ntuple(i-> inv(g.elts[i]), N))
|
return DirectPowerGroupElem(ntuple(i-> inv(g.elts[i]), N))
|
||||||
end
|
end
|
||||||
|
@ -11,7 +11,6 @@ import Base: findfirst, findnext, findlast, findprev, replace
|
|||||||
import Base: deepcopy_internal
|
import Base: deepcopy_internal
|
||||||
|
|
||||||
using LinearAlgebra
|
using LinearAlgebra
|
||||||
using Markdown
|
|
||||||
|
|
||||||
export gens, FreeGroup, Aut, SAut
|
export gens, FreeGroup, Aut, SAut
|
||||||
|
|
||||||
@ -32,17 +31,11 @@ include("findreplace.jl")
|
|||||||
include("DirectPower.jl")
|
include("DirectPower.jl")
|
||||||
include("WreathProducts.jl")
|
include("WreathProducts.jl")
|
||||||
|
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
#
|
#
|
||||||
# String I/O
|
# String I/O
|
||||||
#
|
#
|
||||||
|
|
||||||
@doc doc"""
|
|
||||||
show(io::IO, W::GWord)
|
|
||||||
> The actual string produced by show depends on the eltype of `W.symbols`.
|
|
||||||
|
|
||||||
"""
|
|
||||||
function Base.show(io::IO, W::GWord)
|
function Base.show(io::IO, W::GWord)
|
||||||
if length(W) == 0
|
if length(W) == 0
|
||||||
print(io, "(id)")
|
print(io, "(id)")
|
||||||
@ -64,16 +57,17 @@ end
|
|||||||
# Misc
|
# Misc
|
||||||
#
|
#
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
gens(G::AbstractFPGroups)
|
gens(G::AbstractFPGroups)
|
||||||
> returns vector of generators of `G`, as its elements.
|
Return vector of generators of `G`, as its elements.
|
||||||
"""
|
"""
|
||||||
AbstractAlgebra.gens(G::AbstractFPGroup) = G.(G.gens)
|
AbstractAlgebra.gens(G::AbstractFPGroup) = G.(G.gens)
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
metric_ball(S::Vector{GroupElem}, center=Id; radius=2, op=*)
|
metric_ball(S::AbstractVector{<:GroupElem}
|
||||||
|
[, center=one(first(S)); radius=2, op=*])
|
||||||
Compute metric ball as a list of elements of non-decreasing length, given the
|
Compute metric ball as a list of elements of non-decreasing length, given the
|
||||||
word-length metric on group generated by `S`. The ball is centered at `center`
|
word-length metric on the group generated by `S`. The ball is centered at `center`
|
||||||
(by default: the identity element). `radius` and `op` keywords specify the
|
(by default: the identity element). `radius` and `op` keywords specify the
|
||||||
radius and multiplication operation to be used.
|
radius and multiplication operation to be used.
|
||||||
"""
|
"""
|
||||||
@ -90,12 +84,12 @@ function generate_balls(S::AbstractVector{T}, center::T=one(first(S));
|
|||||||
return c.*B, sizes
|
return c.*B, sizes
|
||||||
end
|
end
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
image(A::GWord, homomorphism; kwargs...)
|
image(w::GWord, homomorphism; kwargs...)
|
||||||
Evaluate homomorphism `homomorphism` on a GWord `A`.
|
Evaluate homomorphism `homomorphism` on a group word (element) `w`.
|
||||||
`homomorphism` needs implement
|
`homomorphism` needs to implement
|
||||||
> `hom(s; kwargs...)`,
|
> `hom(w; kwargs...)`,
|
||||||
where `hom(;kwargs...)` evaluates the value at the identity element.
|
where `hom(;kwargs...)` returns the value at the identity element.
|
||||||
"""
|
"""
|
||||||
function image(w::GWord, hom; kwargs...)
|
function image(w::GWord, hom; kwargs...)
|
||||||
return reduce(*,
|
return reduce(*,
|
||||||
|
@ -8,18 +8,17 @@ import AbstractAlgebra: AbstractPermutationGroup, AbstractPerm
|
|||||||
#
|
#
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
WreathProduct(N, P) <: Group
|
WreathProduct(N, P) <: Group
|
||||||
> Implements Wreath product of a group `N` by permutation group $P = S_n$,
|
Return the wreath product of a group `N` by permutation group `P`, usually
|
||||||
> usually written as $N \wr P$.
|
written as `N ≀ P`. The multiplication inside wreath product is defined as
|
||||||
> The multiplication inside wreath product is defined as
|
> `(n, σ) * (m, τ) = (n*σ(m), στ)`
|
||||||
> > `(n, σ) * (m, τ) = (n*σ(m), στ)`
|
where `σ(m)` denotes the action (from the right) of the permutation group on
|
||||||
> where `σ(m)` denotes the action (from the right) of the permutation group on
|
`n-tuples` of elements from `N`
|
||||||
> `n-tuples` of elements from `N`
|
|
||||||
|
|
||||||
# Arguments:
|
# Arguments:
|
||||||
* `N::Group` : the single factor of the group $N$
|
* `N::Group` : the single factor of the `DirectPower` group `N`
|
||||||
* `P::Generic.PermGroup` : full `PermutationGroup`
|
* `P::AbstractPermutationGroup` acting on `DirectPower` of `N`
|
||||||
"""
|
"""
|
||||||
struct WreathProduct{N, T<:Group, PG<:AbstractPermutationGroup} <: Group
|
struct WreathProduct{N, T<:Group, PG<:AbstractPermutationGroup} <: Group
|
||||||
N::DirectPowerGroup{N, T}
|
N::DirectPowerGroup{N, T}
|
||||||
@ -71,25 +70,25 @@ function (G::WreathProduct{N})(g::WreathProductElem{N}) where {N}
|
|||||||
return WreathProductElem(n, p)
|
return WreathProductElem(n, p)
|
||||||
end
|
end
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm)
|
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm)
|
||||||
> Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and
|
Create an element of wreath product `G` by coercing `n` and `p` to `G.N` and
|
||||||
> `G.P`, respectively.
|
`G.P`, respectively.
|
||||||
"""
|
"""
|
||||||
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm) = WreathProductElem(n,p)
|
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm) = WreathProductElem(n,p)
|
||||||
|
|
||||||
Base.one(G::WreathProduct) = WreathProductElem(one(G.N), one(G.P), false)
|
Base.one(G::WreathProduct) = WreathProductElem(one(G.N), one(G.P), false)
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
(G::WreathProduct)(p::Generic.Perm)
|
(G::WreathProduct)(p::Generic.Perm)
|
||||||
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
|
Return the image of permutation `p` in `G` via embedding `p → (id,p)`.
|
||||||
"""
|
"""
|
||||||
(G::WreathProduct)(p::Generic.Perm) = G(one(G.N), p)
|
(G::WreathProduct)(p::Generic.Perm) = G(one(G.N), p)
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
(G::WreathProduct)(n::DirectPowerGroupElem)
|
(G::WreathProduct)(n::DirectPowerGroupElem)
|
||||||
> Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the
|
Return the image of `n` in `G` via embedding `n → (n, ())`. This is the
|
||||||
> embedding that makes the sequence `1 -> N -> G -> P -> 1` exact.
|
embedding that makes the sequence `1 → N → G → P → 1` exact.
|
||||||
"""
|
"""
|
||||||
(G::WreathProduct)(n::DirectPowerGroupElem) = G(n, one(G.P))
|
(G::WreathProduct)(n::DirectPowerGroupElem) = G(n, one(G.P))
|
||||||
|
|
||||||
@ -149,14 +148,12 @@ end
|
|||||||
|
|
||||||
(p::Generic.Perm)(n::DirectPowerGroupElem) = DirectPowerGroupElem(n.elts[p.d])
|
(p::Generic.Perm)(n::DirectPowerGroupElem) = DirectPowerGroupElem(n.elts[p.d])
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
*(g::WreathProductElem, h::WreathProductElem)
|
*(g::WreathProductElem, h::WreathProductElem)
|
||||||
> Return the wreath product group operation of elements, i.e.
|
Return the group operation of wreath product elements, i.e.
|
||||||
>
|
|
||||||
> `g*h = (g.n*g.p(h.n), g.p*h.p)`,
|
> `g*h = (g.n*g.p(h.n), g.p*h.p)`,
|
||||||
>
|
where `g.p(h.n)` denotes the action of `g.p::Generic.Perm` on
|
||||||
> where `g.p(h.n)` denotes the action of `g.p::Generic.Perm` on
|
`h.n::DirectPowerGroupElem` via standard permutation of coordinates.
|
||||||
> `h.n::DirectPowerGroupElem` via standard permutation of coordinates.
|
|
||||||
"""
|
"""
|
||||||
function *(g::WreathProductElem, h::WreathProductElem)
|
function *(g::WreathProductElem, h::WreathProductElem)
|
||||||
return WreathProductElem(g.n*g.p(h.n), g.p*h.p, false)
|
return WreathProductElem(g.n*g.p(h.n), g.p*h.p, false)
|
||||||
@ -164,9 +161,9 @@ end
|
|||||||
|
|
||||||
^(g::WreathProductElem, n::Integer) = Base.power_by_squaring(g, n)
|
^(g::WreathProductElem, n::Integer) = Base.power_by_squaring(g, n)
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
inv(g::WreathProductElem)
|
inv(g::WreathProductElem)
|
||||||
> Returns the inverse of element of a wreath product, according to the formula
|
Return the inverse of element of a wreath product, according to the formula
|
||||||
> `g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1)`.
|
> `g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1)`.
|
||||||
"""
|
"""
|
||||||
function inv(g::WreathProductElem)
|
function inv(g::WreathProductElem)
|
||||||
|
@ -40,11 +40,10 @@ end
|
|||||||
|
|
||||||
reduce!(w::GWord) = freereduce!(w)
|
reduce!(w::GWord) = freereduce!(w)
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
reduce(w::GWord)
|
reduce(w::GWord)
|
||||||
> performs reduction/simplification of a group element (word in generators).
|
performs reduction/simplification of a group element (word in generators).
|
||||||
> The default reduction is the free group reduction
|
The default reduction is the reduction in the free group reduction.
|
||||||
> More specific procedures should be dispatched on `GWord`s type parameter.
|
More specific procedures should be dispatched on `GWord`s type parameter.
|
||||||
|
|
||||||
"""
|
"""
|
||||||
reduce(w::GWord) = reduce!(deepcopy(w))
|
reduce(w::GWord) = reduce!(deepcopy(w))
|
||||||
|
36
src/types.jl
36
src/types.jl
@ -1,31 +1,31 @@
|
|||||||
abstract type AbstractFPGroup <: Group end
|
abstract type AbstractFPGroup <: Group end
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
::GSymbol
|
::GSymbol
|
||||||
> Represents a syllable.
|
Represents a syllable. Abstract type which all group symbols of
|
||||||
> Abstract type which all group symbols of AbstractFPGroups should subtype. Each
|
`AbstractFPGroups` should subtype. Each concrete subtype should implement fields:
|
||||||
> concrete subtype should implement fields:
|
* `id` which is the `Symbol` representation/identification of a symbol
|
||||||
> * `id` which is the `Symbol` representation/identification of a symbol
|
* `pow` which is the (multiplicative) exponent of a symbol.
|
||||||
> * `pow` which is the (multiplicative) exponent of a symbol.
|
|
||||||
"""
|
"""
|
||||||
abstract type GSymbol end
|
abstract type GSymbol end
|
||||||
|
|
||||||
abstract type GWord{T<:GSymbol} <: GroupElem end
|
abstract type GWord{T<:GSymbol} <: GroupElem end
|
||||||
|
|
||||||
@doc doc"""
|
"""
|
||||||
W::GroupWord{T} <: GWord{T<:GSymbol} <:GroupElem
|
W::GroupWord{T} <: GWord{T<:GSymbol} <:GroupElem
|
||||||
> Basic representation of element of a finitely presented group. `W.symbols`
|
Basic representation of element of a finitely presented group.
|
||||||
> fieldname contains particular group symbols which multiplied constitute a
|
* `syllables(W)` return particular group syllables which multiplied constitute `W`
|
||||||
> group element, i.e. a word in generators.
|
group as a word in generators.
|
||||||
> As reduction (inside group) of such word may be time consuming we provide
|
* `parent(W)` return the parent group.
|
||||||
> `savedhash` and `modified` fields as well:
|
|
||||||
> hash (used e.g. in the `unique` function) is calculated by reducing the word,
|
|
||||||
> setting `modified` flag to `false` and computing the hash which is stored in
|
|
||||||
> `savedhash` field.
|
|
||||||
> whenever word `W` is changed `W.modified` is set to `false`;
|
|
||||||
> Future comparisons don't perform reduction (and use `savedhash`) as long as
|
|
||||||
> `modified` flag remains `false`.
|
|
||||||
|
|
||||||
|
As the reduction (inside the parent group) of word to normal form may be time
|
||||||
|
consuming, we provide a shortcut that is useful in practice:
|
||||||
|
`savehash!(W, h)` and `ismodified(W)` functions.
|
||||||
|
When computing `hash(W)`, a reduction to normal form is performed and a
|
||||||
|
persistent hash is stored inside `W`, setting `ismodified(W)` flag to `false`.
|
||||||
|
This hash can be accessed by `savedhash(W)`.
|
||||||
|
Future comparisons of `W` try not to perform reduction and use the stored hash as shortcut. Only when hashes collide reduction is performed. Whenever word `W` is
|
||||||
|
changed, `ismodified(W)` returns `false` and stored hash is invalidated.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
mutable struct GroupWord{T} <: GWord{T}
|
mutable struct GroupWord{T} <: GWord{T}
|
||||||
|
Loading…
Reference in New Issue
Block a user