mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-11 14:02:33 +01:00
Introduce AddGrp, MltGrp etc.
for the additive group of a ring.
This commit is contained in:
parent
fe0e22f0bf
commit
93253115ab
@ -1,6 +1,79 @@
|
||||
import Base: ×
|
||||
|
||||
export DirectProductGroup, DirectProductGroupElem
|
||||
export MultiplicativeGroup, MltGrp, MltGrpElem
|
||||
export AdditiveGroup, AddGrp, AddGrpElem
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# MltGrp/MltGrpElem & AddGrp/AddGrpElem
|
||||
# (a thin wrapper for multiplicative/additive group of a Ring)
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
for (Gr, Elem) in [(:MltGrp, :MltGrpElem), (:AddGrp, :AddGrpElem)]
|
||||
@eval begin
|
||||
struct $Gr{T<:AbstractAlgebra.Ring} <: AbstractAlgebra.Group
|
||||
obj::T
|
||||
end
|
||||
|
||||
struct $Elem{T<:AbstractAlgebra.RingElem} <: AbstractAlgebra.GroupElem
|
||||
elt::T
|
||||
end
|
||||
|
||||
==(g::$Elem, h::$Elem) = g.elt == h.elt
|
||||
==(G::$Gr, H::$Gr) = G.obj == H.obj
|
||||
|
||||
elem_type(::Type{$Gr{T}}) where T = $Elem{elem_type(T)}
|
||||
parent_type(::Type{$Elem{T}}) where T = $Gr{parent_type(T)}
|
||||
parent(g::$Elem) = $Gr(parent(g.elt))
|
||||
end
|
||||
end
|
||||
|
||||
MultiplicativeGroup = MltGrp
|
||||
AdditiveGroup = AddGrp
|
||||
|
||||
(G::MltGrp)(g::MltGrpElem) = MltGrpElem(G.obj(g.elt))
|
||||
|
||||
function (G::MltGrp)(g)
|
||||
r = (G.obj)(g)
|
||||
isunit(r) || throw(ArgumentError("Cannot coerce to multplicative group: $r is not invertible!"))
|
||||
return MltGrpElem(r)
|
||||
end
|
||||
|
||||
(G::AddGrp)(g) = AddGrpElem((G.obj)(g))
|
||||
|
||||
(G::MltGrp)() = MltGrpElem(G.obj(1))
|
||||
(G::AddGrp)() = AddGrpElem(G.obj())
|
||||
|
||||
inv(g::MltGrpElem) = MltGrpElem(inv(g.elt))
|
||||
inv(g::AddGrpElem) = AddGrpElem(-g.elt)
|
||||
|
||||
for (Elem, op) in ([:MltGrpElem, :*], [:AddGrpElem, :+])
|
||||
@eval begin
|
||||
|
||||
^(g::$Elem, n::Integer) = $Elem(op(g.elt, n))
|
||||
|
||||
function *(g::$Elem, h::$Elem)
|
||||
parent(g) == parent(h) || throw("Cannot multiply elements of different parents")
|
||||
return $Elem($op(g.elt,h.elt))
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
Base.show(io::IO, G::MltGrp) = print(io, "The multiplicative group of $(G.obj)")
|
||||
Base.show(io::IO, G::AddGrp) = print(io, "The additive group of $(G.obj)")
|
||||
|
||||
Base.show(io::IO, g::Union{MltGrpElem, AddGrpElem}) = show(io, g.elt)
|
||||
|
||||
gens(F::AbstractAlgebra.Field) = elem_type(F)[gen(F)]
|
||||
|
||||
order(G::AddGrp{<:AbstractAlgebra.GFField}) = order(G.obj)
|
||||
elements(G::AddGrp{F}) where F <: AbstractAlgebra.GFField = (G((i-1)*G.obj(1)) for i in 1:order(G))
|
||||
|
||||
order(G::MltGrp{<:AbstractAlgebra.GFField}) = order(G.obj) - 1
|
||||
elements(G::MltGrp{F}) where F <: AbstractAlgebra.GFField = (G(i*G.obj(1)) for i in 1:order(G))
|
||||
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
@ -64,6 +137,14 @@ function ×(G::Group, H::Group)
|
||||
return DirectProductGroup(G,2)
|
||||
end
|
||||
|
||||
DirectProductGroup(R::T, n::Int) where {T<:AbstractAlgebra.Ring} =
|
||||
DirectProductGroup(AdditiveGroup(R), n)
|
||||
|
||||
function ×(G::DirectProductGroup{T}, H::Group) where T <: Union{AdditiveGroup, MultiplicativeGroup}
|
||||
G.group == T(H) || throw(ArgumentError("Direct products are defined only for the same groups"))
|
||||
return DirectProductGroup(G.group,G.n+1)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Parent object call overloads
|
||||
@ -159,7 +240,6 @@ doc"""
|
||||
> Return the direct-product group operation of elements, i.e. component-wise
|
||||
> operation as defined by `operations` field of the parent object.
|
||||
"""
|
||||
# TODO: dirty hack around `+/*` operations
|
||||
function *(g::DirectProductGroupElem{T}, h::DirectProductGroupElem{T}, check::Bool=true) where {T}
|
||||
if check
|
||||
parent(g) == parent(h) || throw("Can not multiply elements of different groups!")
|
||||
@ -167,26 +247,14 @@ function *(g::DirectProductGroupElem{T}, h::DirectProductGroupElem{T}, check::Bo
|
||||
return DirectProductGroupElem([a*b for (a,b) in zip(g.elts,h.elts)])
|
||||
end
|
||||
|
||||
function *(g::DirectProductGroupElem{T}, h::DirectProductGroupElem{T}, check::Bool=true) where {T<:RingElem}
|
||||
if check
|
||||
parent(g) == parent(h) || throw("Can not multiply elements of different groups!")
|
||||
end
|
||||
return DirectProductGroupElem(g.elts + h.elts)
|
||||
end
|
||||
|
||||
doc"""
|
||||
inv(g::DirectProductGroupElem)
|
||||
> Return the inverse of the given element in the direct product group.
|
||||
"""
|
||||
# TODO: dirty hack around `+/*` operation
|
||||
function inv(g::DirectProductGroupElem{T}) where {T<:GroupElem}
|
||||
return DirectProductGroupElem([inv(a) for a in g.elts])
|
||||
end
|
||||
|
||||
function inv(g::DirectProductGroupElem{T}) where {T<:RingElem}
|
||||
return DirectProductGroupElem(-g.elts)
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Misc
|
||||
|
Loading…
Reference in New Issue
Block a user