diff --git a/src/DirectPower.jl b/src/DirectPower.jl index 26fd545..9b3e7f2 100644 --- a/src/DirectPower.jl +++ b/src/DirectPower.jl @@ -1,100 +1,4 @@ export DirectPowerGroup, DirectPowerGroupElem -export MultiplicativeGroup, MltGrp, MltGrpElem -export AdditiveGroup, AddGrp, AddGrpElem - -############################################################################### -# -# MltGrp/MltGrpElem & AddGrp/AddGrpElem -# (a thin wrapper for multiplicative/additive group of a Ring) -# -############################################################################### - -for (Gr, Elem) in [(:MltGrp, :MltGrpElem), (:AddGrp, :AddGrpElem)] - @eval begin - struct $Gr{T<:AbstractAlgebra.Ring} <: AbstractAlgebra.Group - obj::T - end - - struct $Elem{T<:AbstractAlgebra.RingElem} <: AbstractAlgebra.GroupElem - elt::T - end - - ==(g::$Elem, h::$Elem) = g.elt == h.elt - ==(G::$Gr, H::$Gr) = G.obj == H.obj - - elem_type(::Type{$Gr{T}}) where T = $Elem{elem_type(T)} - eltype(::Type{$Gr{T}}) where T = $Elem{elem_type(T)} - parent_type(::Type{$Elem{T}}) where T = $Gr{parent_type(T)} - parent(g::$Elem) = $Gr(parent(g.elt)) - length(G::$Gr{<:AbstractAlgebra.Ring}) = order(G.obj) - end -end - -MultiplicativeGroup = MltGrp -AdditiveGroup = AddGrp - -(G::MltGrp)(g::MltGrpElem) = MltGrpElem(G.obj(g.elt)) - -function (G::MltGrp)(g) - r = (G.obj)(g) - isunit(r) || throw(DomainError( - "Cannot coerce to multplicative group: $r is not invertible!")) - return MltGrpElem(r) -end - -(G::AddGrp)(g) = AddGrpElem((G.obj)(g)) - -(G::MltGrp)() = MltGrpElem(G.obj(1)) -(G::AddGrp)() = AddGrpElem(G.obj()) - -inv(g::MltGrpElem) = MltGrpElem(inv(g.elt)) -inv(g::AddGrpElem) = AddGrpElem(-g.elt) - -for (Elem, op) in ([:MltGrpElem, :*], [:AddGrpElem, :+]) - @eval begin - - ^(g::$Elem, n::Integer) = $Elem(op(g.elt, n)) - - function *(g::$Elem, h::$Elem) - parent(g) == parent(h) || throw(DomainError( - "Cannot multiply elements of different parents")) - return $Elem($op(g.elt,h.elt)) - end - end -end - -show(io::IO, G::MltGrp) = print(io, "The multiplicative group of $(G.obj)") -show(io::IO, G::AddGrp) = print(io, "The additive group of $(G.obj)") - -show(io::IO, g::Union{MltGrpElem, AddGrpElem}) = show(io, g.elt) - -gens(F::AbstractAlgebra.Field) = elem_type(F)[gen(F)] - -order(G::AddGrp{<:AbstractAlgebra.GFField}) = order(G.obj) - -order(G::MltGrp{<:AbstractAlgebra.GFField}) = order(G.obj) - 1 - - -function iterate(G::AddGrp, s=0) - if s >= order(G) - return nothing - else - g, s = iterate(G.obj,s) - return G(g), s - end -end - -function iterate(G::MltGrp, s=0) - if s > order(G) - return nothing - else - g, s = iterate(G.obj, s) - if g == G.obj() - g, s = iterate(G.obj, s) - end - return G(g), s - end -end ############################################################################### # diff --git a/test/DirectPower-tests.jl b/test/DirectPower-tests.jl index 120634c..95116e0 100644 --- a/test/DirectPower-tests.jl +++ b/test/DirectPower-tests.jl @@ -72,129 +72,9 @@ @test elem_type(G×G×G) == DirectPowerGroupElem{3, elem_type(G)} @test parent_type(typeof((G×G)(g,g^2))) == Groups.DirectPowerGroup{2, typeof(G)} @test parent(DirectPowerGroupElem((g,g^2,g^3))) == DirectPowerGroup(G,3) - - F = AdditiveGroup(GF(13)) - - @test elem_type(F×F) == - DirectPowerGroupElem{2, Groups.AddGrpElem{AbstractAlgebra.gfelem{Int}}} - @test parent_type(typeof((F×F)(1,5))) == - Groups.DirectPowerGroup{2, Groups.AddGrp{AbstractAlgebra.GFField{Int}}} - parent((F×F)(1,5)) == DirectPowerGroup(F,2) - - F = MultiplicativeGroup(GF(13)) - - @test elem_type(F×F) == - DirectPowerGroupElem{2, Groups.MltGrpElem{AbstractAlgebra.gfelem{Int}}} - @test parent_type(typeof((F×F)(1,5))) == - Groups.DirectPowerGroup{2, Groups.MltGrp{AbstractAlgebra.GFField{Int}}} - parent((F×F)(1,5)) == DirectPowerGroup(F,2) - end - - @testset "Additive/Multiplicative groups" begin - - R, x = PolynomialRing(QQ, "x") - F, a = NumberField(x^3 + x + 1, "a") - G = PermutationGroup(3) - - @testset "MltGrp basic functionality" begin - Gr = MltGrp(F) - @test Gr(a) isa MltGrpElem - g = Gr(a) - @test deepcopy(g) isa MltGrpElem - @test inv(g) == Gr(a^-1) - @test Gr() == Gr(1) - @test inv(g)*g == Gr() - end - - @testset "AddGrp basic functionality" begin - Gr = AddGrp(F) - @test Gr(a) isa AddGrpElem - g = Gr(a) - @test deepcopy(g) isa AddGrpElem - @test inv(g) == Gr(-a) - @test Gr() == Gr(0) - @test inv(g)*g == Gr() - end - end - - @testset "Direct Product of Multiplicative Groups" begin - - R, x = PolynomialRing(QQ, "x") - F, a = NumberField(x^3 + x + 1, "a") - FF = Groups.DirectPowerGroup(MltGrp(F),2) - - @test FF([a,1]) isa GroupElem - @test FF([a,1]) isa DirectPowerGroupElem - @test FF([a,1]) isa DirectPowerGroupElem{2, MltGrpElem{elem_type(F)}} - @test_throws DomainError FF(1,0) - @test_throws DomainError FF([0,1]) - @test_throws DomainError FF([1,0]) - - @test MltGrp(F) isa AbstractAlgebra.Group - @test MltGrp(F) isa MultiplicativeGroup - @test DirectPowerGroup(MltGrp(F), 2) isa AbstractAlgebra.Group - @test DirectPowerGroup(MltGrp(F), 2) isa DirectPowerGroup{2, MltGrp{typeof(F)}} - - F, a = NumberField(x^3 + x + 1, "a") - FF = DirectPowerGroup(MltGrp(F), 2) - - @test FF(a,a+1) == FF([a,a+1]) - @test FF([1,a+1])*FF([a,a]) == FF(a,a^2+a) - x, y = FF([1,a]), FF([a^2,1]) - @test x*y == FF([a^2, a]) - @test inv(x) == FF([1,-a^2-1]) - - @test parent(x) == FF - end - - @testset "Direct Product of Additive Groups" begin - - R, x = PolynomialRing(QQ, "x") - F, a = NumberField(x^3 + x + 1, "a") - - # Additive Group - @test AddGrp(F) isa AbstractAlgebra.Group - @test AddGrp(F) isa AdditiveGroup - @test DirectPowerGroup(AddGrp(F), 2) isa AbstractAlgebra.Group - @test DirectPowerGroup(AddGrp(F), 2) isa DirectPowerGroup{2, AddGrp{typeof(F)}} - - FF = DirectPowerGroup(AdditiveGroup(F), 2) - - @test FF([0,a]) isa AbstractAlgebra.GroupElem - @test FF(F(0),a) isa DirectPowerGroupElem - @test FF(0,0) isa DirectPowerGroupElem{2, AddGrpElem{elem_type(F)}} - - @test FF(F(1),a+1) == FF([1,a+1]) - - @test FF([F(1),a+1])*FF([a,a]) == FF(1+a,2a+1) - - x, y = FF([1,a]), FF([a^2,1]) - @test x*y == FF(a^2+1, a+1) - @test inv(x) == FF([F(-1),-a]) - - @test parent(x) == FF end @testset "Misc" begin - F = GF(5) - - FF = DirectPowerGroup(AdditiveGroup(F),2) - @test order(FF) == 25 - - elts = vec(collect(FF)) - @test length(elts) == 25 - @test all([g*inv(g) == FF() for g in elts]) - @test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts) - - FF = DirectPowerGroup(MultiplicativeGroup(F), 3) - @test order(FF) == 64 - - elts = vec(collect(FF)) - @test length(elts) == 64 - @test all([g*inv(g) == FF() for g in elts]) - @test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts) - - G = PermutationGroup(3) GG = Groups.DirectPowerGroup(G,3) @test order(GG) == 216 diff --git a/test/WreathProd-tests.jl b/test/WreathProd-tests.jl index 0781574..d251536 100644 --- a/test/WreathProd-tests.jl +++ b/test/WreathProd-tests.jl @@ -64,40 +64,26 @@ end @testset "Group arithmetic" begin - B4 = Groups.WreathProduct(AdditiveGroup(GF(3)), PermutationGroup(4)) + B4 = Groups.WreathProduct(PermutationGroup(3), PermutationGroup(4)) - x = B4((0,1,2,0), perm"(1,2,3)(4)") - @test inv(x) == B4((1,0,2,0), perm"(1,3,2)(4)") + id, a, b = perm"(3)", perm"(1,2)(3)", perm"(1,2,3)" - y = B4((1,0,1,2), perm"(1,4)(2,3)") - @test inv(y) == B4((1,2,0,2), perm"(1,4)(2,3)") + x = B4((id,a,b,id), perm"(1,2,3)(4)") + @test inv(x) == B4((inv(b),id, a,id), perm"(1,3,2)(4)") - @test x*y == B4((0,2,0,2), perm"(1,3,4)(2)") + y = B4((a,id,a,b), perm"(1,4)(2,3)") + @test inv(y) == B4((inv(b), a,id, a), perm"(1,4)(2,3)") - @test y*x == B4((1,2,2,2), perm"(1,4,2)(3)") + @test x*y == B4((id,id,b*a,b), perm"(1,3,4)(2)") + @test y*x == B4(( a, b, id,b), perm"(1,4,2)(3)") + @test inv(x)*y == B4((inv(b)*a,a,a,b), perm"(1,2,4)(3)") + @test y*inv(x) == B4((a,a,a,id), perm"(1,4,3)(2)") - @test inv(x)*y == B4((2,1,2,2), perm"(1,2,4)(3)") - - @test y*inv(x) == B4((1,2,1,0), perm"(1,4,3)(2)") - @test (x*y)^6 == ((x*y)^2)^3 - end @testset "Iteration" begin - B3_a = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3) - @test order(B3_a) == 3^3*6 - @test collect(B3_a) isa Vector{ - WreathProductElem{3, AddGrpElem{AbstractAlgebra.gfelem{Int}}, perm{Int}}} - - B3_m = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3) - @test order(B3_m) == 2^3*6 - @test collect(B3_m) isa Vector{ - WreathProductElem{3, MltGrpElem{AbstractAlgebra.gfelem{Int}}, perm{Int}}} - - @test length(Set([B3_a, B3_m, B3_a])) == 2 - Wr = WreathProduct(PermutationGroup(2),PermutationGroup(4)) elts = collect(Wr) @@ -108,18 +94,5 @@ @test all([g*inv(g) == Wr() for g in elts]) @test all(inv(g*h) == inv(h)*inv(g) for g in elts for h in elts) end - - @testset "Misc" begin - B3_a = Groups.WreathProduct(AdditiveGroup(GF(3)), S_3) - @test string(B3_a) == "Wreath Product of The additive group of Finite field F_3 by Permutation group over 3 elements" - - @test string(B3_a(perm"(1,3)")) == "([0,0,0]≀(1,3))" - - B3_m = Groups.WreathProduct(MultiplicativeGroup(GF(3)), S_3) - @test string(B3_m) == "Wreath Product of The multiplicative group of Finite field F_3 by Permutation group over 3 elements" - - @test string(B3_m(perm"(1,3)")) == "([1,1,1]≀(1,3))" - - end end