1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 14:35:28 +01:00

first try on the new FPGroups

This commit is contained in:
Marek Kaluba 2021-05-05 01:10:28 +02:00
parent 711988b98a
commit 9d7596acf1
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
3 changed files with 293 additions and 0 deletions

View File

@ -21,6 +21,12 @@ include("freereduce.jl")
include("arithmetic.jl") include("arithmetic.jl")
include("findreplace.jl") include("findreplace.jl")
module New
include("new_types.jl")
include("normalform.jl")
end # module New
############################################################################### ###############################################################################
# #
# String I/O # String I/O

211
src/new_types.jl Normal file
View File

@ -0,0 +1,211 @@
using GroupsCore
# using Groups
# import Groups.AbstractFPGroup
import KnuthBendix
import KnuthBendix: AbstractWord, Alphabet, Word, RewritingSystem
import KnuthBendix: alphabet
using Random
## "Abstract" definitions
"""
AbstractFPGroup
An Abstract type representing finitely presented groups. Every instance `` must implement
* `KnuthBendix.alphabet(G::MyFPGroup)`
By default `word_type(::Type{MyFPGroup}) = Word{UInt16}` returns the default
word type used for group elements. You may wish to override this if e.g. to
> `word_type(::Type{MyFPGroup}) = Word{UInt8}`
if your group has less than `255` generators.
"""
abstract type AbstractFPGroup <: GroupsCore.Group end
word_type(G::AbstractFPGroup) = word_type(typeof(G))
# the default:
word_type(::Type{<:AbstractFPGroup}) = Word{UInt16}
function (G::AbstractFPGroup)(word::AbstractVector{<:Integer})
@boundscheck @assert all(l -> 1<= l <=length(KnuthBendix.alphabet(G)), word)
return FPGroupElement(word_type(G)(word), G)
end
## Group Interface
Base.one(G::AbstractFPGroup) = FPGroupElement(one(word_type(G)), G)
Base.eltype(::Type{FPG}) where {FPG<:AbstractFPGroup} =
FPGroupElement{FPG, word_type(FPG)}
struct FPGroupIter{GEl}
elts::Vector{GEl}
seen::Set{GEl}
u::GEl
v::GEl
end
FPGroupIter(G::AbstractFPGroup) =
FPGroupIter([one(G)], Set([one(G)]), one(G), one(G))
Base.iterate(G::AbstractFPGroup) = one(G), (FPGroupIter(G), 1, 1)
@inline function Base.iterate(G::AbstractFPGroup, state)
iter, elt_idx, gen_idx = state
if gen_idx > length(alphabet(G))
elt_idx == length(iter.elts) && return nothing
gen_idx = 1
elt_idx += 1
end
res = let (u, v) = (iter.u, iter.v), elt = iter.elts[elt_idx]
copyto!(v, elt) # this invalidates normalform of v
@assert !isnormalform(v)
push!(word(v), gen_idx)
resize!(word(u), 0)
normalform!(u, v)
end
if res in iter.seen
return iterate(G, (iter, elt_idx, gen_idx+1))
else
w = deepcopy(res)
@assert isnormalform(w)
push!(iter.elts, w)
push!(iter.seen, w)
state = (iter, elt_idx, gen_idx+1)
return w, state
end
end
# the default:
# Base.IteratorSize(::Type{<:AbstractFPGroup}) = Base.SizeUnknown()
GroupsCore.ngens(G::AbstractFPGroup) = length(G.gens)
function GroupsCore.gens(G::AbstractFPGroup, i::Integer)
@boundscheck 1<=i<=GroupsCore.ngens(G)
return FPGroupElement(word_type(G)([i]), G)
end
GroupsCore.gens(G::AbstractFPGroup) = [gens(G, i) for i in 1:GroupsCore.ngens(G)]
# TODO: ProductReplacementAlgorithm
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:AbstractFPGroup},
)
l = rand(10:100)
G = rs[]
symmgens_len = length(alphabet(F))
return FPGroupElement(word_type(G)(rand(1:symmgens_len, l)), G)
end
## FPGroupElement
mutable struct FPGroupElement{G<:AbstractFPGroup, W<:AbstractWord} <: GroupElement
word::W
savedhash::UInt
parent::G
FPGroupElement(word::W, G::AbstractFPGroup) where W<:AbstractWord =
new{typeof(G), W}(word, UInt(0), G)
FPGroupElement(word::W, hash::UInt, G::AbstractFPGroup) where W<:AbstractWord =
new{typeof(G), W}(word, hash, G)
end
word(f::FPGroupElement) = f.word
#convenience
KnuthBendix.alphabet(g::FPGroupElement) = alphabet(parent(g))
function Base.show(io::IO, f::FPGroupElement)
f = normalform!(f)
print(io, KnuthBendix.string_repr(word(f), alphabet(f)))
end
## Hashing
# We store hash of a word in field `savedhash` to use it as cheap replacement
# for equality checking. In the last bit of `savehash` we store the information
# whether the word is already reduced (in normal form) or not. Hence
isnormalform(g::FPGroupElement) = Bool(g.savedhash & 1)
# To update hash use this internal method, possibly only after computing the
# normal form of `g`:
_update_savedhash!(g::FPGroupElement, h = hash(word(g))) =
(g.savedhash = h | 1; return g)
# If `g` has been mutated (e.g. `word(g)` has been modified, `_invalidate_hash`
# must be called.
_invalidate_hash!(g::FPGroupElement) = g.savedhash = g.savedhash & 0
# Accessor for the saved hash
@inline _savedhash(f::FPGroupElement) = f.savedhash
function Base.hash(g::FPGroupElement, h::UInt)
normalform!(g)
# compute the best approximation of the normal form
return hash(parent(g), _savedhash(g) h)
end
function Base.copyto!(res::FPGroupElement, g::FPGroupElement)
resize!(word(res), length(word(g)))
copyto!(word(res), word(g))
_invalidate_hash!(res)
return res
end
## GroupElement Interface for FPGroupElement
Base.parent(f::FPGroupElement) = f.parent
GroupsCore.parent_type(::Type{<:FPGroupElement{G}}) where G = G
function Base.:(==)(g::FPGroupElement, h::FPGroupElement)
@boundscheck @assert parent(g) === parent(h)
hash(g) != hash(h) && return false
# hash reduces to normal form behind the scenes
return word(g) == word(h)
end
function Base.deepcopy_internal(g::FPGroupElement, stackdict::IdDict)
return FPGroupElement(copy(word(g)), _savedhash(g), parent(g))
end
Base.inv(g::FPGroupElement) =
(G = parent(g); FPGroupElement(inv(alphabet(G), word(g)), G))
function Base.:(*)(g::FPGroupElement, h::FPGroupElement)
@boundscheck @assert parent(g) === parent(h)
return FPGroupElement(word(g)*word(h), parent(g))
end
GroupsCore.isfiniteorder(g::FPGroupElement) = isone(g) ? true : throw("Not Implemented")
# additional methods:
Base.isone(g::FPGroupElement) = (normalform!(g); isempty(word(g)))
## Free Groups
struct FreeGroup{T} <: AbstractFPGroup
gens::Vector{T}
alphabet::KnuthBendix.Alphabet{T}
function FreeGroup(gens, A::KnuthBendix.Alphabet) where W
@assert length(gens) == length(unique(gens))
@assert all(l->l in KnuthBendix.letters(A), gens)
return new{eltype(gens)}(gens, A)
end
end
function FreeGroup(a::Alphabet)
@boundscheck @assert all(KnuthBendix.hasinverse(l, A)
for l in KnuthBendix.letters(a))
return FreeGroup(KnuthBendix.letters(a), a)
end
Base.show(io::IO, F::FreeGroup) = print(io, "free group on $(ngens(F)) generators")
# mandatory methods:
KnuthBendix.alphabet(F::FreeGroup) = F.alphabet

76
src/normalform.jl Normal file
View File

@ -0,0 +1,76 @@
"""
normalform!(g::FPGroupElement)
Compute the normal form of `g`, possibly modifying `g` in-place.
"""
@inline function normalform!(g::FPGroupElement)
isnormalform(g) && return g
let w = one(word(g))
w = normalform!(w, g)
resize!(word(g), length(w))
copyto!(word(g), w)
end
g = _update_savedhash!(g)
@assert isnormalform(g)
return g
end
"""
normalform!(res::GEl, g::GEl) where GEl<:FPGroupElement
Compute the normal fom of `g`, storing it in `res`.
"""
function normalform!(res::GEl, g::GEl) where GEl<:FPGroupElement
@boundscheck @assert parent(res) === parent(g)
if isnormalform(g)
copyto!(res, g)
_update_savedhash!(res, g.savedhash)
else
resize!(word(res), 0)
normalform!(word(res), g)
res = _update_savedhash!(res)
end
return res
end
"""
normalform!(res::AbstractWord, g::FPGroupElement)
Append the normal form of `g` to word `res`, modifying `res` in place.
Defaults to the rewriting in the free group.
"""
@inline function normalform!(res::AbstractWord, g::FPGroupElement)
isone(res) && isnormalform(g) && return append!(res, word(g))
if isnormalform(g) && inv(alphabet(g), last(out)) != first(word(g))
return append!(res, word(g))
end
return free_rewrite!(res, word(g), alphabet(g))
end
"""
free_rewrite!(v::AbstractWord, w::AbstractWord, A::Alphabet)
Append `w` to `v` applying free reductions as defined by the inverses of `A`.
"""
free_rewrite!(v::AbstractWord, w::AbstractWord, A::Alphabet) =
KnuthBendix.rewrite_from_left!(v, w, A)
function KnuthBendix.rewrite_from_left!(
v::AbstractWord,
w::AbstractWord,
A::Alphabet
)
while !isone(w)
if isone(v)
push!(v, popfirst!(w))
else
# the first check is for monoids only
if KnuthBendix.hasinverse(last(v), A) && inv(A, last(v)) == first(w)
pop!(v)
popfirst!(w)
else
push!(v, popfirst!(w))
end
end
end
return v
end