mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-12 06:12:33 +01:00
update AutGroup-tests
This commit is contained in:
parent
f505b00502
commit
ab16d05b94
@ -5,7 +5,7 @@
|
|||||||
@testset "AutSymbol" begin
|
@testset "AutSymbol" begin
|
||||||
@test_throws MethodError Groups.AutSymbol("a")
|
@test_throws MethodError Groups.AutSymbol("a")
|
||||||
@test_throws MethodError Groups.AutSymbol("a", 1)
|
@test_throws MethodError Groups.AutSymbol("a", 1)
|
||||||
f = AutSymbol("a", 1, :(a()), v -> v)
|
f = Groups.AutSymbol("a", 1, :(a()), v -> v)
|
||||||
@test isa(f, Groups.GSymbol)
|
@test isa(f, Groups.GSymbol)
|
||||||
@test isa(f, Groups.AutSymbol)
|
@test isa(f, Groups.AutSymbol)
|
||||||
@test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol)
|
@test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol)
|
||||||
@ -83,58 +83,94 @@
|
|||||||
end
|
end
|
||||||
|
|
||||||
@testset "AutGroup/AutGroupElem constructors" begin
|
@testset "AutGroup/AutGroupElem constructors" begin
|
||||||
f = AutSymbol("a", 1, :(a()), v -> v)
|
f = Groups.AutSymbol("a", 1, :(a()), v -> v)
|
||||||
@test isa(GWord(f), GWord)
|
@test isa(AutGroupElem(f), Groups.GWord)
|
||||||
@test isa(GWord(f), AutGroupElem)
|
|
||||||
@test isa(AutGroupElem(f), AutGroupElem)
|
@test isa(AutGroupElem(f), AutGroupElem)
|
||||||
@test isa(AutGroup(FreeGroup(3)), Group)
|
@test isa(AutGroup(FreeGroup(3)), Nemo.Group)
|
||||||
@test isa(AutGroup(FreeGroup(1)), FPGroup)
|
@test isa(AutGroup(FreeGroup(1)), Groups.FPGroup)
|
||||||
A = AutGroup(FreeGroup(1))
|
A = AutGroup(FreeGroup(1))
|
||||||
@test isa(f*f, AutWord)
|
@test isa(generators(A), Vector{AutGroupElem})
|
||||||
@test isa(f^2, AutWord)
|
@test length(generators(A)) == 1
|
||||||
@test isa(f^-1, AutWord)
|
A = AutGroup(FreeGroup(1), special=true)
|
||||||
|
@test length(generators(A)) == 0
|
||||||
|
A = AutGroup(FreeGroup(2))
|
||||||
|
@test length(generators(A)) == 7
|
||||||
|
gens = generators(A)
|
||||||
|
|
||||||
|
@test isa(A(Groups.rmul_autsymbol(1,2)), AutGroupElem)
|
||||||
|
@test A(Groups.rmul_autsymbol(1,2)) in gens
|
||||||
|
|
||||||
|
@test isa(A(Groups.rmul_autsymbol(2,1)), AutGroupElem)
|
||||||
|
@test A(Groups.rmul_autsymbol(2,1)) in gens
|
||||||
|
|
||||||
|
@test isa(A(Groups.lmul_autsymbol(1,2)), AutGroupElem)
|
||||||
|
@test A(Groups.lmul_autsymbol(1,2)) in gens
|
||||||
|
|
||||||
|
@test isa(A(Groups.lmul_autsymbol(2,1)), AutGroupElem)
|
||||||
|
@test A(Groups.lmul_autsymbol(2,1)) in gens
|
||||||
|
|
||||||
|
@test isa(A(Groups.flip_autsymbol(1)), AutGroupElem)
|
||||||
|
@test A(Groups.flip_autsymbol(1)) in gens
|
||||||
|
|
||||||
|
@test isa(A(Groups.flip_autsymbol(2)), AutGroupElem)
|
||||||
|
@test A(Groups.flip_autsymbol(2)) in gens
|
||||||
|
|
||||||
|
@test isa(A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))),
|
||||||
|
AutGroupElem)
|
||||||
|
@test A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))) in gens
|
||||||
|
end
|
||||||
|
|
||||||
|
A = AutGroup(FreeGroup(4))
|
||||||
|
|
||||||
|
@testset "eltary functions" begin
|
||||||
|
|
||||||
|
f = Groups.perm_autsymbol(G([2,3,4,1]))
|
||||||
|
@test (Groups.change_pow(f, 2)).pow == 1
|
||||||
|
@test (Groups.change_pow(f, -2)).pow == 1
|
||||||
|
@test (inv(f)).pow == 1
|
||||||
|
|
||||||
|
|
||||||
|
f = Groups.perm_autsymbol(G([2,1,4,3]))
|
||||||
|
@test isa(inv(f), Groups.AutSymbol)
|
||||||
|
|
||||||
|
@test_throws DomainError f^-1
|
||||||
|
@test_throws MethodError f*f
|
||||||
|
|
||||||
|
@test A(f)^-1 == A(inv(f))
|
||||||
|
end
|
||||||
|
|
||||||
|
@testset "reductions/arithmetic" begin
|
||||||
|
f = Groups.perm_autsymbol(G([2,3,4,1]))
|
||||||
|
|
||||||
|
f² = Groups.r_multiply(A(f), [f], reduced=false)
|
||||||
|
@test Groups.simplify_perms!(f²) == false
|
||||||
|
@test f²^2 == A()
|
||||||
|
|
||||||
|
a = A(Groups.rmul_autsymbol(1,2))*Groups.flip_autsymbol(2)
|
||||||
|
b = Groups.flip_autsymbol(2)*A(inv(Groups.rmul_autsymbol(1,2)))
|
||||||
|
@test a*b == b*a
|
||||||
|
@test a^3 * b^3 == A()
|
||||||
|
end
|
||||||
|
|
||||||
|
@testset "specific Aut(F4) tests" begin
|
||||||
|
N = 4
|
||||||
|
G = AutGroup(FreeGroup(N))
|
||||||
|
S = G.gens
|
||||||
|
@test isa(S, Vector{Groups.AutSymbol})
|
||||||
|
S = [G(s) for s in unique(S)]
|
||||||
|
@test isa(S, Vector{AutGroupElem})
|
||||||
|
@test S == generators(G)
|
||||||
|
@test length(S) == 51
|
||||||
|
S_inv = [S..., [inv(s) for s in S]...]
|
||||||
|
@test length(unique(S_inv)) == 75
|
||||||
|
|
||||||
|
G = AutGroup(FreeGroup(N), special=true, outer=true)
|
||||||
|
S = generators(G)
|
||||||
|
S_inv = [G(), S..., [inv(s) for s in S]...]
|
||||||
|
S_inv = unique(S_inv)
|
||||||
|
B_2 = [i*j for (i,j) in Base.product(S_inv, S_inv)]
|
||||||
|
@test length(B_2) == 2401
|
||||||
|
@test length(unique(B_2)) == 1777
|
||||||
end
|
end
|
||||||
#
|
|
||||||
# @testset "eltary functions" begin
|
|
||||||
# f = perm_autsymbol([2,1,4,3])
|
|
||||||
# @test isa(inv(f), AutSymbol)
|
|
||||||
# @test isa(f^-1, AutWord)
|
|
||||||
# @test f^-1 == GWord(inv(f))
|
|
||||||
# @test inv(f) == f
|
|
||||||
# end
|
|
||||||
#
|
|
||||||
# @testset "reductions/arithmetic" begin
|
|
||||||
# f = perm_autsymbol([2,1,4,3])
|
|
||||||
# f² = Groups.r_multiply(AutWord(f), [f], reduced=false)
|
|
||||||
# @test Groups.simplify_perms!(f²) == false
|
|
||||||
# @test f² == one(typeof(f*f))
|
|
||||||
#
|
|
||||||
# a = rmul_autsymbol(1,2)*flip_autsymbol(2)
|
|
||||||
# b = flip_autsymbol(2)*inv(rmul_autsymbol(1,2))
|
|
||||||
# @test a*b == b*a
|
|
||||||
# @test a^3 * b^3 == one(a)
|
|
||||||
# end
|
|
||||||
#
|
|
||||||
# @testset "specific Aut(𝔽₄) tests" begin
|
|
||||||
# N = 4
|
|
||||||
# import Combinatorics.nthperm
|
|
||||||
# SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
|
||||||
# indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
|
||||||
#
|
|
||||||
# σs = [perm_autsymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
|
||||||
# ϱs = [rmul_autsymbol(i,j) for (i,j) in indexing]
|
|
||||||
# λs = [lmul_autsymbol(i,j) for (i,j) in indexing]
|
|
||||||
# ɛs = [flip_autsymbol(i) for i in 1:N];
|
|
||||||
#
|
|
||||||
# S = vcat(ϱs, λs, σs, ɛs)
|
|
||||||
# S = vcat(S, [inv(s) for s in S])
|
|
||||||
# @test isa(S, Vector{AutSymbol})
|
|
||||||
# @test length(S) == 102
|
|
||||||
# @test length(unique(S)) == 75
|
|
||||||
# S₁ = [GWord(s) for s in unique(S)]
|
|
||||||
# @test isa(S₁, Vector{AutWord})
|
|
||||||
# p = prod(S₁)
|
|
||||||
# @test length(p) == 53
|
|
||||||
# end
|
|
||||||
|
|
||||||
end
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user