1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-12 06:12:33 +01:00

update AutGroup-tests

This commit is contained in:
kalmar 2017-05-15 17:30:18 +02:00
parent f505b00502
commit ab16d05b94

View File

@ -5,7 +5,7 @@
@testset "AutSymbol" begin @testset "AutSymbol" begin
@test_throws MethodError Groups.AutSymbol("a") @test_throws MethodError Groups.AutSymbol("a")
@test_throws MethodError Groups.AutSymbol("a", 1) @test_throws MethodError Groups.AutSymbol("a", 1)
f = AutSymbol("a", 1, :(a()), v -> v) f = Groups.AutSymbol("a", 1, :(a()), v -> v)
@test isa(f, Groups.GSymbol) @test isa(f, Groups.GSymbol)
@test isa(f, Groups.AutSymbol) @test isa(f, Groups.AutSymbol)
@test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol) @test isa(Groups.perm_autsymbol(G([1,2,3,4])), Groups.AutSymbol)
@ -83,58 +83,94 @@
end end
@testset "AutGroup/AutGroupElem constructors" begin @testset "AutGroup/AutGroupElem constructors" begin
f = AutSymbol("a", 1, :(a()), v -> v) f = Groups.AutSymbol("a", 1, :(a()), v -> v)
@test isa(GWord(f), GWord) @test isa(AutGroupElem(f), Groups.GWord)
@test isa(GWord(f), AutGroupElem)
@test isa(AutGroupElem(f), AutGroupElem) @test isa(AutGroupElem(f), AutGroupElem)
@test isa(AutGroup(FreeGroup(3)), Group) @test isa(AutGroup(FreeGroup(3)), Nemo.Group)
@test isa(AutGroup(FreeGroup(1)), FPGroup) @test isa(AutGroup(FreeGroup(1)), Groups.FPGroup)
A = AutGroup(FreeGroup(1)) A = AutGroup(FreeGroup(1))
@test isa(f*f, AutWord) @test isa(generators(A), Vector{AutGroupElem})
@test isa(f^2, AutWord) @test length(generators(A)) == 1
@test isa(f^-1, AutWord) A = AutGroup(FreeGroup(1), special=true)
@test length(generators(A)) == 0
A = AutGroup(FreeGroup(2))
@test length(generators(A)) == 7
gens = generators(A)
@test isa(A(Groups.rmul_autsymbol(1,2)), AutGroupElem)
@test A(Groups.rmul_autsymbol(1,2)) in gens
@test isa(A(Groups.rmul_autsymbol(2,1)), AutGroupElem)
@test A(Groups.rmul_autsymbol(2,1)) in gens
@test isa(A(Groups.lmul_autsymbol(1,2)), AutGroupElem)
@test A(Groups.lmul_autsymbol(1,2)) in gens
@test isa(A(Groups.lmul_autsymbol(2,1)), AutGroupElem)
@test A(Groups.lmul_autsymbol(2,1)) in gens
@test isa(A(Groups.flip_autsymbol(1)), AutGroupElem)
@test A(Groups.flip_autsymbol(1)) in gens
@test isa(A(Groups.flip_autsymbol(2)), AutGroupElem)
@test A(Groups.flip_autsymbol(2)) in gens
@test isa(A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))),
AutGroupElem)
@test A(Groups.perm_autsymbol(PermutationGroup(2)([2,1]))) in gens
end
A = AutGroup(FreeGroup(4))
@testset "eltary functions" begin
f = Groups.perm_autsymbol(G([2,3,4,1]))
@test (Groups.change_pow(f, 2)).pow == 1
@test (Groups.change_pow(f, -2)).pow == 1
@test (inv(f)).pow == 1
f = Groups.perm_autsymbol(G([2,1,4,3]))
@test isa(inv(f), Groups.AutSymbol)
@test_throws DomainError f^-1
@test_throws MethodError f*f
@test A(f)^-1 == A(inv(f))
end
@testset "reductions/arithmetic" begin
f = Groups.perm_autsymbol(G([2,3,4,1]))
= Groups.r_multiply(A(f), [f], reduced=false)
@test Groups.simplify_perms!() == false
@test ^2 == A()
a = A(Groups.rmul_autsymbol(1,2))*Groups.flip_autsymbol(2)
b = Groups.flip_autsymbol(2)*A(inv(Groups.rmul_autsymbol(1,2)))
@test a*b == b*a
@test a^3 * b^3 == A()
end
@testset "specific Aut(F4) tests" begin
N = 4
G = AutGroup(FreeGroup(N))
S = G.gens
@test isa(S, Vector{Groups.AutSymbol})
S = [G(s) for s in unique(S)]
@test isa(S, Vector{AutGroupElem})
@test S == generators(G)
@test length(S) == 51
S_inv = [S..., [inv(s) for s in S]...]
@test length(unique(S_inv)) == 75
G = AutGroup(FreeGroup(N), special=true, outer=true)
S = generators(G)
S_inv = [G(), S..., [inv(s) for s in S]...]
S_inv = unique(S_inv)
B_2 = [i*j for (i,j) in Base.product(S_inv, S_inv)]
@test length(B_2) == 2401
@test length(unique(B_2)) == 1777
end end
#
# @testset "eltary functions" begin
# f = perm_autsymbol([2,1,4,3])
# @test isa(inv(f), AutSymbol)
# @test isa(f^-1, AutWord)
# @test f^-1 == GWord(inv(f))
# @test inv(f) == f
# end
#
# @testset "reductions/arithmetic" begin
# f = perm_autsymbol([2,1,4,3])
# f² = Groups.r_multiply(AutWord(f), [f], reduced=false)
# @test Groups.simplify_perms!(f²) == false
# @test f² == one(typeof(f*f))
#
# a = rmul_autsymbol(1,2)*flip_autsymbol(2)
# b = flip_autsymbol(2)*inv(rmul_autsymbol(1,2))
# @test a*b == b*a
# @test a^3 * b^3 == one(a)
# end
#
# @testset "specific Aut(𝔽₄) tests" begin
# N = 4
# import Combinatorics.nthperm
# SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
# indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
#
# σs = [perm_autsymbol(perm) for perm in SymmetricGroup(N)[2:end]];
# ϱs = [rmul_autsymbol(i,j) for (i,j) in indexing]
# λs = [lmul_autsymbol(i,j) for (i,j) in indexing]
# ɛs = [flip_autsymbol(i) for i in 1:N];
#
# S = vcat(ϱs, λs, σs, ɛs)
# S = vcat(S, [inv(s) for s in S])
# @test isa(S, Vector{AutSymbol})
# @test length(S) == 102
# @test length(unique(S)) == 75
# S₁ = [GWord(s) for s in unique(S)]
# @test isa(S₁, Vector{AutWord})
# p = prod(S₁)
# @test length(p) == 53
# end
end end