mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-05 20:45:28 +01:00
docs
This commit is contained in:
parent
6fa01d87ef
commit
b7151d1fc2
@ -7,16 +7,17 @@ export WreathProduct, WreathProductElem
|
||||
###############################################################################
|
||||
|
||||
doc"""
|
||||
WreathProduct <: Group
|
||||
> Implements Wreath product of a group N by permutation (sub)group P < Sₖ,
|
||||
WreathProduct{T<:Group} <: Group
|
||||
> Implements Wreath product of a group $N$ by permutation (sub)group $P < S_k$,
|
||||
> usually written as $N \wr P$.
|
||||
> The multiplication inside wreath product is defined as
|
||||
> (n, σ) * (m, τ) = (n*ψ(σ)(m), σ*τ),
|
||||
> where ψ:P → Aut(Nᵏ) is the permutation representation of Sₖ restricted to P.
|
||||
> $$(n, \sigma) * (m, \tau) = (n\psi(\sigma)(m), \sigma\tau),$$
|
||||
> where $\psi:P → Aut(N^k)$ is the permutation representation of $S_k$
|
||||
> restricted to $P$.
|
||||
|
||||
# Arguments:
|
||||
* `::Group` : the single factor of group N
|
||||
* `::PermutationGroup` : full PermutationGroup
|
||||
* `::Group` : the single factor of group $N$
|
||||
* `::PermGroup` : full `PermutationGroup`
|
||||
"""
|
||||
immutable WreathProduct{T<:Group} <: Group
|
||||
N::DirectProductGroup{T}
|
||||
@ -99,7 +100,6 @@ doc"""
|
||||
doc"""
|
||||
(G::WreathProduct)(p::perm)
|
||||
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
|
||||
|
||||
"""
|
||||
(G::WreathProduct)(p::perm) = G(G.N(), p)
|
||||
|
||||
@ -107,7 +107,6 @@ doc"""
|
||||
(G::WreathProduct)(n::DirectProductGroupElem)
|
||||
> Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the
|
||||
> embedding that makes sequence `1 -> N -> G -> P -> 1` exact.
|
||||
|
||||
"""
|
||||
(G::WreathProduct)(n::DirectProductGroupElem) = G(n, G.P())
|
||||
|
||||
@ -171,9 +170,9 @@ doc"""
|
||||
*(g::WreathProductElem, h::WreathProductElem)
|
||||
> Return the wreath product group operation of elements, i.e.
|
||||
>
|
||||
> g*h = (g.n*g.p(h.n), g.p*h.p),
|
||||
> `g*h = (g.n*g.p(h.n), g.p*h.p)`,
|
||||
>
|
||||
> where g.p(h.n) denotes the action of `g.p::perm` on
|
||||
> where `g.p(h.n)` denotes the action of `g.p::perm` on
|
||||
> `h.n::DirectProductGroupElem` via standard permutation of coordinates.
|
||||
"""
|
||||
function *(g::WreathProductElem, h::WreathProductElem)
|
||||
|
Loading…
Reference in New Issue
Block a user