1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-12 06:12:33 +01:00

Merge pull request #11 from kalmarek/enh/speeding_up

Enh/speeding up
This commit is contained in:
kalmarek 2020-10-09 15:13:24 +02:00 committed by GitHub
commit bc23ce0a90
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
10 changed files with 224 additions and 145 deletions

11
.github/workflows/TagBot.yml vendored Normal file
View File

@ -0,0 +1,11 @@
name: TagBot
on:
schedule:
- cron: 0 * * * *
jobs:
TagBot:
runs-on: ubuntu-latest
steps:
- uses: JuliaRegistries/TagBot@v1
with:
token: ${{ secrets.GITHUB_TOKEN }}

View File

@ -1,15 +1,15 @@
name = "Groups"
uuid = "5d8bd718-bd84-11e8-3b40-ad14f4a32557"
authors = ["Marek Kaluba <kalmar@amu.edu.pl>"]
version = "0.4.2"
version = "0.5.0"
[deps]
AbstractAlgebra = "c3fe647b-3220-5bb0-a1ea-a7954cac585d"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
Markdown = "d6f4376e-aef5-505a-96c1-9c027394607a"
ThreadsX = "ac1d9e8a-700a-412c-b207-f0111f4b6c0d"
[compat]
AbstractAlgebra = "^0.9.0"
AbstractAlgebra = "^0.10.0"
[extras]
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

View File

@ -35,9 +35,7 @@ end
# https://github.com/JuliaIntervals/ValidatedNumerics.jl/blob/master/LICENSE.md
function subscriptify(n::Integer)
subscript_0 = Int(0x2080) # Char(0x2080) -> subscript 0
@assert 0 <= n <= 9
return Char(subscript_0 + n)
# return [Char(subscript_0 + i) for i in reverse(digits(n))])
return join([Char(subscript_0 + i) for i in reverse(digits(n))], "")
end
function id_autsymbol()
@ -45,18 +43,26 @@ function id_autsymbol()
end
function transvection_R(i::Integer, j::Integer, pow::Integer=1)
id = Symbol("ϱ", subscriptify(i), subscriptify(j))
if 0 < i < 10 && 0 < j < 10
id = Symbol(:ϱ, subscriptify(i), subscriptify(j))
else
id = Symbol(:ϱ, subscriptify(i), "." ,subscriptify(j))
end
return AutSymbol(id, pow, RTransvect(i, j))
end
function transvection_L(i::Integer, j::Integer, pow::Integer=1)
id = Symbol("λ", subscriptify(i), subscriptify(j))
if 0 < i < 10 && 0 < j < 10
id = Symbol(, subscriptify(i), subscriptify(j))
else
id = Symbol(, subscriptify(i), "." ,subscriptify(j))
end
return AutSymbol(id, pow, LTransvect(i, j))
end
function flip(i::Integer, pow::Integer=1)
iseven(pow) && return id_autsymbol()
id = Symbol("ɛ", subscriptify(i))
id = Symbol(, subscriptify(i))
return AutSymbol(id, 1, FlipAut(i))
end
@ -66,7 +72,7 @@ function AutSymbol(p::Generic.Perm, pow::Integer=1)
end
if any(p.d[i] != i for i in eachindex(p.d))
id = Symbol("σ", "", [subscriptify(i) for i in p.d]..., "")
id = Symbol(:σ, "", join([subscriptify(i) for i in p.d],""), "")
return AutSymbol(id, 1, PermAut(p))
end
return id_autsymbol()
@ -78,9 +84,8 @@ end
σ(v::Generic.Perm, pow::Integer=1) = AutSymbol(v, pow)
function change_pow(s::AutSymbol, n::Integer)
if n == zero(n)
return id_autsymbol()
end
iszero(n) && id_autsymbol()
symbol = s.fn
if symbol isa FlipAut
return flip(symbol.i, n)
@ -162,14 +167,12 @@ end
#
function (ϱ::RTransvect)(v, pow::Integer=1)
append!(v[ϱ.i], v[ϱ.j]^pow)
freereduce!(v[ϱ.i])
rmul!(v[ϱ.i], v[ϱ.j]^pow)
return v
end
function (λ::LTransvect)(v, pow::Integer=1)
prepend!(v[λ.i], v[λ.j]^pow)
freereduce!(v[λ.i])
lmul!(v[λ.i], v[λ.j]^pow)
return v
end
@ -217,41 +220,60 @@ evaluate(f::Automorphism) = f(domain(parent(f)))
# hashing && equality
#
function hash_internal(g::Automorphism, images = freereduce!.(evaluate(g)),
h::UInt = 0x7d28276b01874b19) # hash(Automorphism)
return hash(images, hash(parent(g), h))
function hash_internal(
g::Automorphism,
h::UInt = 0x7d28276b01874b19; # hash(Automorphism)
# alternatively: 0xcbf29ce484222325 from FNV-1a algorithm
images = compute_images(g),
prime = 0x00000100000001b3, # prime from FNV-1a algorithm
)
return foldl((h,x) -> hash(x, h)*prime, images, init = hash(parent(g), h))
end
function compute_images(g::Automorphism)
images = reduce!.(evaluate(g))
savehash!(g, hash_internal(g, images))
unsetmodified!(g)
images = evaluate(g)
for im in images
reduce!(im)
end
return images
end
function (==)(g::Automorphism{N}, h::Automorphism{N}) where N
img_c, imh_c = false, false
syllables(g) == syllables(h) && return true
img_computed, imh_computed = false, false
if ismodified(g)
img = compute_images(g)
img_c = true
img = compute_images(g) # sets modified bit
hash(g, images=img)
img_computed = true
end
if ismodified(h)
imh = compute_images(h)
imh_c = true
imh = compute_images(h) # sets modified bit
hash(h, images=imh)
imh_computed = true
end
@assert !ismodified(g) && !ismodified(h)
# cheap
hash(g) != hash(h) && return false # hashes differ, so images must have differed as well
# equal elements, or possibly hash conflict
if !img_c
img = compute_images(g)
end
if !imh_c
imh = compute_images(h)
# if hashes differ, images must have differed as well
hash(g) != hash(h) && return false
# hashes equal, hence either equal elements, or a hash conflict
begin
if !img_computed
img_task = Threads.@spawn img = compute_images(g)
# img = compute_images(g)
end
if !imh_computed
imh_task = Threads.@spawn imh = compute_images(h)
# imh = compute_images(h)
end
!img_computed && fetch(img_task)
!imh_computed && fetch(imh_task)
end
img != imh && @warn "hash collision in == :" g h
return img == imh
end

View File

@ -6,9 +6,9 @@ export DirectPowerGroup, DirectPowerGroupElem
#
###############################################################################
@doc doc"""
"""
DirectPowerGroup(G::Group, n::Int) <: Group
Implements `n`-fold direct product of `G`. The group operation is
Return `n`-fold direct product of `G`. The group operation is
`*` distributed component-wise, with component-wise identity as neutral element.
"""
struct DirectPowerGroup{N, T<:Group} <: Group
@ -70,11 +70,11 @@ Base.getindex(g::DirectPowerGroupElem, i::Int) = g.elts[i]
#
###############################################################################
@doc doc"""
"""
(G::DirectPowerGroup)(a::Vector, check::Bool=true)
> Constructs element of the $n$-fold direct product group `G` by coercing each
> element of vector `a` to `G.group`. If `check` flag is set to `false` neither
> check on the correctness nor coercion is performed.
Constructs element of the `n`-fold direct product group `G` by coercing each
element of vector `a` to `G.group`. If `check` flag is set to `false` neither
check on the correctness nor coercion is performed.
"""
function (G::DirectPowerGroup{N})(a::Vector, check::Bool=true) where N
if check
@ -131,20 +131,12 @@ end
#
###############################################################################
@doc doc"""
==(g::DirectPowerGroup, h::DirectPowerGroup)
> Checks if two direct product groups are the same.
"""
function (==)(G::DirectPowerGroup{N}, H::DirectPowerGroup{M}) where {N,M}
N == M || return false
G.group == H.group || return false
return true
end
@doc doc"""
==(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
> Checks if two direct product group elements are the same.
"""
(==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem) = g.elts == h.elts
###############################################################################
@ -153,11 +145,6 @@ end
#
###############################################################################
@doc doc"""
*(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
> Return the direct-product group operation of elements, i.e. component-wise
> operation as defined by `operations` field of the parent object.
"""
function *(g::DirectPowerGroupElem{N}, h::DirectPowerGroupElem{N}, check::Bool=true) where N
if check
parent(g) == parent(h) || throw(DomainError(
@ -168,10 +155,6 @@ end
^(g::DirectPowerGroupElem, n::Integer) = Base.power_by_squaring(g, n)
@doc doc"""
inv(g::DirectPowerGroupElem)
> Return the inverse of the given element in the direct product group.
"""
function inv(g::DirectPowerGroupElem{N}) where {N}
return DirectPowerGroupElem(ntuple(i-> inv(g.elts[i]), N))
end

View File

@ -11,7 +11,7 @@ import Base: findfirst, findnext, findlast, findprev, replace
import Base: deepcopy_internal
using LinearAlgebra
using Markdown
using ThreadsX
export gens, FreeGroup, Aut, SAut
@ -32,17 +32,11 @@ include("findreplace.jl")
include("DirectPower.jl")
include("WreathProducts.jl")
###############################################################################
#
# String I/O
#
@doc doc"""
show(io::IO, W::GWord)
> The actual string produced by show depends on the eltype of `W.symbols`.
"""
function Base.show(io::IO, W::GWord)
if length(W) == 0
print(io, "(id)")
@ -53,9 +47,9 @@ end
function Base.show(io::IO, s::T) where {T<:GSymbol}
if s.pow == 1
print(io, string(s.id))
print(io, string(s.id))
else
print(io, "$(s.id)^$(s.pow)")
print(io, "$(s.id)^$(s.pow)")
end
end
@ -64,43 +58,109 @@ end
# Misc
#
@doc doc"""
"""
gens(G::AbstractFPGroups)
> returns vector of generators of `G`, as its elements.
Return vector of generators of `G`, as its elements.
"""
AbstractAlgebra.gens(G::AbstractFPGroup) = G.(G.gens)
@doc doc"""
metric_ball(S::Vector{GroupElem}, center=Id; radius=2, op=*)
"""
wlmetric_ball(S::AbstractVector{<:GroupElem}
[, center=one(first(S)); radius=2, op=*])
Compute metric ball as a list of elements of non-decreasing length, given the
word-length metric on group generated by `S`. The ball is centered at `center`
word-length metric on the group generated by `S`. The ball is centered at `center`
(by default: the identity element). `radius` and `op` keywords specify the
radius and multiplication operation to be used.
"""
function generate_balls(S::AbstractVector{T}, center::T=one(first(S));
radius=2, op=*) where T<:Union{GroupElem, NCRingElem}
sizes = Int[]
B = [one(first(S))]
for i in 1:radius
BB = [op(i,j) for (i,j) in Base.product(B,S)]
B = unique([B; vec(BB)])
push!(sizes, length(B))
function wlmetric_ball_serial(
S::AbstractVector{T};
radius = 2,
op = *,
) where {T<:Union{GroupElem,NCRingElem}}
old = unique!([one(first(S)), S...])
sizes = [1, length(old)]
for i = 2:radius
new = collect(
op(i, j)
for (i, j) in Base.product(@view(old[sizes[end-1]:end]), S)
)
append!(old, new)
resize!(new, 0)
old = unique!(old)
push!(sizes, length(old))
end
isone(center) && return B, sizes
return c.*B, sizes
return old, sizes[2:end]
end
@doc doc"""
image(A::GWord, homomorphism; kwargs...)
Evaluate homomorphism `homomorphism` on a GWord `A`.
`homomorphism` needs implement
> `hom(s; kwargs...)`,
where `hom(;kwargs...)` evaluates the value at the identity element.
function wlmetric_ball_thr(
S::AbstractVector{T};
radius = 2,
op = *,
) where {T<:Union{GroupElem,NCRingElem}}
old = unique!([one(first(S)), S...])
sizes = [1, length(old)]
for r = 2:radius
begin
new = ThreadsX.collect(
op(o, s) for o in @view(old[sizes[end-1]:end]) for s in S
)
ThreadsX.foreach(hash, new)
end
append!(old, new)
resize!(new, 0)
old = ThreadsX.unique(old)
push!(sizes, length(old))
end
return old, sizes[2:end]
end
function wlmetric_ball_serial(
S::AbstractVector{T},
center::T;
radius = 2,
op = *,
) where {T<:Union{GroupElem,NCRingElem}}
E, sizes = wlmetric_ball_serial(S, radius = radius, op = op)
isone(center) && return E, sizes
return c .* E, sizes
end
function wlmetric_ball_thr(
S::AbstractVector{T},
center::T;
radius = 2,
op = *,
) where {T<:Union{GroupElem,NCRingElem}}
E, sizes = wlmetric_ball_thr(S, radius = radius, op = op)
isone(center) && return E, sizes
return c .* E, sizes
end
function wlmetric_ball(
S::AbstractVector{T},
center::T = one(first(S));
radius = 2,
op = *,
threading = true,
) where {T<:Union{GroupElem,NCRingElem}}
threading && return wlmetric_ball_thr(S, center, radius = radius, op = op)
return return wlmetric_ball_serial(S, center, radius = radius, op = op)
end
"""
image(w::GWord, homomorphism; kwargs...)
Evaluate homomorphism `homomorphism` on a group word (element) `w`.
`homomorphism` needs to implement
> `hom(w; kwargs...)`,
where `hom(;kwargs...)` returns the value at the identity element.
"""
function image(w::GWord, hom; kwargs...)
return reduce(*,
return reduce(
*,
(hom(s; kwargs...) for s in syllables(w)),
init = hom(;kwargs...))
init = hom(; kwargs...),
)
end
end # of module Groups

View File

@ -8,18 +8,17 @@ import AbstractAlgebra: AbstractPermutationGroup, AbstractPerm
#
###############################################################################
@doc doc"""
"""
WreathProduct(N, P) <: Group
> Implements Wreath product of a group `N` by permutation group $P = S_n$,
> usually written as $N \wr P$.
> The multiplication inside wreath product is defined as
> > `(n, σ) * (m, τ) = (n*σ(m), στ)`
> where `σ(m)` denotes the action (from the right) of the permutation group on
> `n-tuples` of elements from `N`
Return the wreath product of a group `N` by permutation group `P`, usually
written as `N ≀ P`. The multiplication inside wreath product is defined as
> `(n, σ) * (m, τ) = (n*σ(m), στ)`
where `σ(m)` denotes the action (from the right) of the permutation group on
`n-tuples` of elements from `N`
# Arguments:
* `N::Group` : the single factor of the group $N$
* `P::Generic.PermGroup` : full `PermutationGroup`
* `N::Group` : the single factor of the `DirectPower` group `N`
* `P::AbstractPermutationGroup` acting on `DirectPower` of `N`
"""
struct WreathProduct{N, T<:Group, PG<:AbstractPermutationGroup} <: Group
N::DirectPowerGroup{N, T}
@ -71,25 +70,25 @@ function (G::WreathProduct{N})(g::WreathProductElem{N}) where {N}
return WreathProductElem(n, p)
end
@doc doc"""
"""
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm)
> Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and
> `G.P`, respectively.
Create an element of wreath product `G` by coercing `n` and `p` to `G.N` and
`G.P`, respectively.
"""
(G::WreathProduct)(n::DirectPowerGroupElem, p::Generic.Perm) = WreathProductElem(n,p)
Base.one(G::WreathProduct) = WreathProductElem(one(G.N), one(G.P), false)
@doc doc"""
"""
(G::WreathProduct)(p::Generic.Perm)
> Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`.
Return the image of permutation `p` in `G` via embedding `p (id,p)`.
"""
(G::WreathProduct)(p::Generic.Perm) = G(one(G.N), p)
@doc doc"""
"""
(G::WreathProduct)(n::DirectPowerGroupElem)
> Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the
> embedding that makes the sequence `1 -> N -> G -> P -> 1` exact.
Return the image of `n` in `G` via embedding `n → (n, ())`. This is the
embedding that makes the sequence `1 → N → G → P → 1` exact.
"""
(G::WreathProduct)(n::DirectPowerGroupElem) = G(n, one(G.P))
@ -149,14 +148,12 @@ end
(p::Generic.Perm)(n::DirectPowerGroupElem) = DirectPowerGroupElem(n.elts[p.d])
@doc doc"""
"""
*(g::WreathProductElem, h::WreathProductElem)
> Return the wreath product group operation of elements, i.e.
>
Return the group operation of wreath product elements, i.e.
> `g*h = (g.n*g.p(h.n), g.p*h.p)`,
>
> where `g.p(h.n)` denotes the action of `g.p::Generic.Perm` on
> `h.n::DirectPowerGroupElem` via standard permutation of coordinates.
where `g.p(h.n)` denotes the action of `g.p::Generic.Perm` on
`h.n::DirectPowerGroupElem` via standard permutation of coordinates.
"""
function *(g::WreathProductElem, h::WreathProductElem)
return WreathProductElem(g.n*g.p(h.n), g.p*h.p, false)
@ -164,9 +161,9 @@ end
^(g::WreathProductElem, n::Integer) = Base.power_by_squaring(g, n)
@doc doc"""
"""
inv(g::WreathProductElem)
> Returns the inverse of element of a wreath product, according to the formula
Return the inverse of element of a wreath product, according to the formula
> `g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1)`.
"""
function inv(g::WreathProductElem)

View File

@ -4,14 +4,18 @@
#
function freereduce!(::Type{Bool}, w::GWord)
if syllablelength(w) == 1
filter!(!isone, syllables(w))
return syllablelength(w) == 1
end
reduced = true
for i in 1:syllablelength(w)-1
@inbounds for i in 1:syllablelength(w)-1
s, ns = syllables(w)[i], syllables(w)[i+1]
if isone(s)
continue
elseif s.id == ns.id
elseif s.id === ns.id
reduced = false
setmodified!(w)
p1 = s.pow
p2 = ns.pow
@ -19,7 +23,10 @@ function freereduce!(::Type{Bool}, w::GWord)
syllables(w)[i] = change_pow(s, 0)
end
end
filter!(!isone, syllables(w))
if !reduced
filter!(!isone, syllables(w))
setmodified!(w)
end
return reduced
end
@ -33,11 +40,10 @@ end
reduce!(w::GWord) = freereduce!(w)
@doc doc"""
"""
reduce(w::GWord)
> performs reduction/simplification of a group element (word in generators).
> The default reduction is the free group reduction
> More specific procedures should be dispatched on `GWord`s type parameter.
performs reduction/simplification of a group element (word in generators).
The default reduction is the reduction in the free group reduction.
More specific procedures should be dispatched on `GWord`s type parameter.
"""
reduce(w::GWord) = reduce!(deepcopy(w))

View File

@ -9,9 +9,9 @@ function hash_internal(W::GWord)
return hash(syllables(W), hash(typeof(W), h))
end
function hash(W::GWord, h::UInt)
function hash(W::GWord, h::UInt=UInt(0); kwargs...)
if ismodified(W)
savehash!(W, hash_internal(W))
savehash!(W, hash_internal(W; kwargs...))
unsetmodified!(W)
end
return xor(savedhash(W), h)

View File

@ -1,31 +1,31 @@
abstract type AbstractFPGroup <: Group end
@doc doc"""
"""
::GSymbol
> Represents a syllable.
> Abstract type which all group symbols of AbstractFPGroups should subtype. Each
> concrete subtype should implement fields:
> * `id` which is the `Symbol` representation/identification of a symbol
> * `pow` which is the (multiplicative) exponent of a symbol.
Represents a syllable. Abstract type which all group symbols of
`AbstractFPGroups` should subtype. Each concrete subtype should implement fields:
* `id` which is the `Symbol` representation/identification of a symbol
* `pow` which is the (multiplicative) exponent of a symbol.
"""
abstract type GSymbol end
abstract type GWord{T<:GSymbol} <: GroupElem end
@doc doc"""
"""
W::GroupWord{T} <: GWord{T<:GSymbol} <:GroupElem
> Basic representation of element of a finitely presented group. `W.symbols`
> fieldname contains particular group symbols which multiplied constitute a
> group element, i.e. a word in generators.
> As reduction (inside group) of such word may be time consuming we provide
> `savedhash` and `modified` fields as well:
> hash (used e.g. in the `unique` function) is calculated by reducing the word,
> setting `modified` flag to `false` and computing the hash which is stored in
> `savedhash` field.
> whenever word `W` is changed `W.modified` is set to `false`;
> Future comparisons don't perform reduction (and use `savedhash`) as long as
> `modified` flag remains `false`.
Basic representation of element of a finitely presented group.
* `syllables(W)` return particular group syllables which multiplied constitute `W`
group as a word in generators.
* `parent(W)` return the parent group.
As the reduction (inside the parent group) of word to normal form may be time
consuming, we provide a shortcut that is useful in practice:
`savehash!(W, h)` and `ismodified(W)` functions.
When computing `hash(W)`, a reduction to normal form is performed and a
persistent hash is stored inside `W`, setting `ismodified(W)` flag to `false`.
This hash can be accessed by `savedhash(W)`.
Future comparisons of `W` try not to perform reduction and use the stored hash as shortcut. Only when hashes collide reduction is performed. Whenever word `W` is
changed, `ismodified(W)` returns `false` and stored hash is invalidated.
"""
mutable struct GroupWord{T} <: GWord{T}

View File

@ -13,7 +13,7 @@ using LinearAlgebra
s = one(M); s[1,3] = 2; s[3,2] = -1;
S = [w,r,s]; S = unique([S; inv.(S)]);
_, sizes = Groups.generate_balls(S, radius=4);
_, sizes = Groups.wlmetric_ball(S, radius=4);
@test sizes == [7, 33, 141, 561]
end