1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-12 06:12:33 +01:00

automorphisms apply in-place

This commit is contained in:
kalmarek 2018-03-21 19:23:13 +01:00
parent dd4d23189b
commit c8f0ee04da

View File

@ -56,23 +56,33 @@ parent_type(::AutGroupElem) = AutGroup
#
###############################################################################
function (ϱ::RTransvect)(v::NTuple{N, T}, pow=1::Int) where {N, T}
return ntuple(k -> (k==ϱ.i ? v[ϱ.i]*v[ϱ.j]^pow : v[k]), N)::NTuple{N, T}
function (ϱ::RTransvect)(v, pow=1::Int)
@inbounds Groups.r_multiply!(v[ϱ.i], (v[ϱ.j]^pow).symbols, reduced=false)
return v
end
function (λ::LTransvect)(v::NTuple{N, T}, pow=1::Int) where {N, T}
return ntuple(k -> (k==λ.i ? v[λ.j]^pow*v[λ.i] : v[k]), N)::NTuple{N, T}
function (λ::LTransvect)(v, pow=1::Int)
@inbounds Groups.l_multiply!(v[λ.i], (v[λ.j]^pow).symbols, reduced=false)
return v
end
function (σ::PermAut)(v::NTuple{N, T}, pow=1::Int) where {N, T}
return ntuple(k -> v[(σ.p^pow).d[k]], N)::NTuple{N, T}
function (σ::PermAut)(v, pow=1::Int)
w = deepcopy(v)
s = (σ.p^pow).d
@inbounds for k in eachindex(v)
v[k].symbols = w[s[k]].symbols
end
return v
end
function (ɛ::FlipAut)(v::NTuple{N, T}, pow=1::Int) where {N, T}
return ntuple(k -> (k==ɛ.i ? v[k]^(-1^pow) : v[k]), N)::NTuple{N, T}
function (ɛ::FlipAut)(v, pow=1::Int)
@inbounds if isodd(pow)
v[ɛ.i].symbols = inv(v[ɛ.i]).symbols
end
return v
end
(::Identity)(v::NTuple{N, T}, pow=1::Int) where {N, T} = v::NTuple{N, T}
(::Identity)(v, pow=1::Int) = v
# taken from ValidatedNumerics, under under the MIT "Expat" License:
# https://github.com/JuliaIntervals/ValidatedNumerics.jl/blob/master/LICENSE.md