1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-11 22:07:33 +01:00

New tests to check correctness of sigmas, rhos, lambdas and epsilons

This commit is contained in:
kalmar 2017-02-10 16:01:19 +01:00
parent 31ad7d17eb
commit c9c52f3182

View File

@ -122,6 +122,78 @@ end
@test isa(flip_AutSymbol(3), AutSymbol)
end
@testset "flip_AutSymbol correctness" begin
a,b,c,d = [FGWord(FGSymbol(i)) for i in ["a", "b", "c", "d"]]
domain = [a,b,c,d]
@test flip_AutSymbol(1)(domain) == [a^-1, b,c,d]
@test flip_AutSymbol(2)(domain) == [a, b^-1,c,d]
@test flip_AutSymbol(3)(domain) == [a, b,c^-1,d]
@test flip_AutSymbol(4)(domain) == [a, b,c,d^-1]
@test inv(flip_AutSymbol(1))(domain) == [a^-1, b,c,d]
@test inv(flip_AutSymbol(2))(domain) == [a, b^-1,c,d]
@test inv(flip_AutSymbol(3))(domain) == [a, b,c^-1,d]
@test inv(flip_AutSymbol(4))(domain) == [a, b,c,d^-1]
end
@testset "symmetric_AutSymbol correctness" begin
a,b,c,d = [FGWord(FGSymbol(i)) for i in ["a", "b", "c", "d"]]
domain = [a,b,c,d]
σ = symmetric_AutSymbol([1,2,3,4])
@test σ(domain) == domain
@test inv(σ)(domain) == domain
σ = symmetric_AutSymbol([2,3,4,1])
@test σ(domain) == [b, c, d, a]
@test inv(σ)(domain) == [d, a, b, c]
σ = symmetric_AutSymbol([2,1,4,3])
@test σ(domain) == [b, a, d, c]
@test inv(σ)(domain) == [b, a, d, c]
σ = symmetric_AutSymbol([2,3,1,4])
@test σ(domain) == [b,c,a,d]
@test inv(σ)(domain) == [c,a,b,d]
end
@testset "mul_AutSymbol correctness" begin
a,b,c,d = [FGWord(FGSymbol(i)) for i in ["a", "b", "c", "d"]]
domain = [a,b,c,d]
i,j = 1,2
r = rmul_AutSymbol(i,j)
l = lmul_AutSymbol(i,j)
@test r(domain) == [a*b,b,c,d]
@test inv(r)(domain) == [a*b^-1,b,c,d]
@test l(domain) == [b*a,b,c,d]
@test inv(l)(domain) == [b^-1*a,b,c,d]
i,j = 3,1
r = rmul_AutSymbol(i,j)
l = lmul_AutSymbol(i,j)
@test r(domain) == [a,b,c*a,d]
@test inv(r)(domain) == [a,b,c*a^-1,d]
@test l(domain) == [a,b,a*c,d]
@test inv(l)(domain) == [a,b,a^-1*c,d]
i,j = 4,3
r = rmul_AutSymbol(i,j)
l = lmul_AutSymbol(i,j)
@test r(domain) == [a,b,c,d*c]
@test inv(r)(domain) == [a,b,c,d*c^-1]
@test l(domain) == [a,b,c,c*d]
@test inv(l)(domain) == [a,b,c,c^-1*d]
i,j = 2,4
r = rmul_AutSymbol(i,j)
l = lmul_AutSymbol(i,j)
@test r(domain) == [a,b*d,c,d]
@test inv(r)(domain) == [a,b*d^-1,c,d]
@test l(domain) == [a,d*b,c,d]
@test inv(l)(domain) == [a,d^-1*b,c,d]
end
@testset "AutWords" begin
f = AutSymbol("a", 1, :(a()), v -> v)
@test isa(GWord(f), GWord)
@ -169,6 +241,5 @@ end
@test isa(S₁, Vector{AutWord})
p = prod(S₁)
@test length(p) == 53
end
end