mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-11-19 06:30:29 +01:00
add implementation of MatrixGroups as fp groups
This commit is contained in:
parent
db5d60134c
commit
cb933c3f87
@ -10,6 +10,8 @@ import Random
|
||||
import OrderedCollections: OrderedSet
|
||||
|
||||
export Alphabet, AutomorphismGroup, FreeGroup, FreeGroup, FPGroup, FPGroupElement, SpecialAutomorphismGroup
|
||||
export MatrixGroups
|
||||
|
||||
export alphabet, evaluate, word, gens
|
||||
|
||||
include("types.jl")
|
||||
@ -20,6 +22,8 @@ include("autgroups.jl")
|
||||
include("aut_groups/sautFn.jl")
|
||||
include("aut_groups/mcg.jl")
|
||||
|
||||
include("matrix_groups/MatrixGroups.jl")
|
||||
using .MatrixGroups
|
||||
|
||||
include("wl_ball.jl")
|
||||
end # of module Groups
|
||||
|
17
src/matrix_groups/MatrixGroups.jl
Normal file
17
src/matrix_groups/MatrixGroups.jl
Normal file
@ -0,0 +1,17 @@
|
||||
module MatrixGroups
|
||||
|
||||
using GroupsCore
|
||||
using Groups
|
||||
using KnuthBendix
|
||||
|
||||
using LinearAlgebra # Identity matrix
|
||||
using Random # GroupsCore rand
|
||||
|
||||
export SpecialLinearGroup, SymplecticGroup
|
||||
|
||||
include("abstract.jl")
|
||||
|
||||
include("SLn.jl")
|
||||
include("Spn.jl")
|
||||
|
||||
end # module
|
42
src/matrix_groups/SLn.jl
Normal file
42
src/matrix_groups/SLn.jl
Normal file
@ -0,0 +1,42 @@
|
||||
include("eltary_matrices.jl")
|
||||
|
||||
struct SpecialLinearGroup{N, T, R, A, S} <: MatrixGroup{N,T}
|
||||
base_ring::R
|
||||
alphabet::A
|
||||
gens::S
|
||||
|
||||
function SpecialLinearGroup{N}(base_ring) where N
|
||||
S = [ElementaryMatrix{N}(i,j, one(base_ring)) for i in 1:N for j in 1:N if i≠j]
|
||||
alphabet = Alphabet(S)
|
||||
|
||||
return new{
|
||||
N,
|
||||
eltype(base_ring),
|
||||
typeof(base_ring),
|
||||
typeof(alphabet),
|
||||
typeof(S)
|
||||
}(base_ring, alphabet, S)
|
||||
end
|
||||
end
|
||||
|
||||
GroupsCore.ngens(SL::SpecialLinearGroup{N}) where N = N^2 - N
|
||||
|
||||
Base.show(io::IO, SL::SpecialLinearGroup{N, T}) where {N, T} =
|
||||
print(io, "special linear group of $N×$N matrices over $T")
|
||||
|
||||
function Base.show(
|
||||
io::IO,
|
||||
::MIME"text/plain",
|
||||
sl::Groups.AbstractFPGroupElement{<:SpecialLinearGroup{N}}
|
||||
) where N
|
||||
|
||||
Groups.normalform!(sl)
|
||||
|
||||
print(io, "SL{$N,$(eltype(sl))} matrix: ")
|
||||
KnuthBendix.print_repr(io, word(sl), alphabet(sl))
|
||||
println(io)
|
||||
Base.print_array(io, matrix_repr(sl))
|
||||
end
|
||||
|
||||
Base.show(io::IO, sl::Groups.AbstractFPGroupElement{<:SpecialLinearGroup}) =
|
||||
KnuthBendix.print_repr(io, word(sl), alphabet(sl))
|
68
src/matrix_groups/Spn.jl
Normal file
68
src/matrix_groups/Spn.jl
Normal file
@ -0,0 +1,68 @@
|
||||
include("eltary_symplectic.jl")
|
||||
|
||||
struct SymplecticGroup{N, T, R, A, S} <: MatrixGroup{N,T}
|
||||
base_ring::R
|
||||
alphabet::A
|
||||
gens::S
|
||||
|
||||
function SymplecticGroup{N}(base_ring) where N
|
||||
S = symplectic_gens(N, eltype(base_ring))
|
||||
alphabet = Alphabet(S)
|
||||
|
||||
return new{
|
||||
N,
|
||||
eltype(base_ring),
|
||||
typeof(base_ring),
|
||||
typeof(alphabet),
|
||||
typeof(S)
|
||||
}(base_ring, alphabet, S)
|
||||
end
|
||||
end
|
||||
|
||||
GroupsCore.ngens(Sp::SymplecticGroup) = length(Sp.gens)
|
||||
|
||||
Base.show(io::IO, ::SymplecticGroup{N}) where N = print(io, "group of $N×$N symplectic matrices")
|
||||
|
||||
function Base.show(
|
||||
io::IO,
|
||||
::MIME"text/plain",
|
||||
sp::Groups.AbstractFPGroupElement{<:SymplecticGroup{N}}
|
||||
) where {N}
|
||||
print(io, "$N×$N Symplectic matrix: ")
|
||||
KnuthBendix.print_repr(io, word(sp), alphabet(sp))
|
||||
println(io)
|
||||
Base.print_array(io, matrix_repr(sp))
|
||||
end
|
||||
|
||||
function symplectic_gens(N, T=Int8)
|
||||
iseven(N) || throw(ArgumentError("N needs to be even!"))
|
||||
n = N÷2
|
||||
|
||||
a_ijs = [ElementarySymplectic{N}(:A, i,j, one(T)) for (i,j) in offdiagonal_indexing(n)]
|
||||
b_is = [ElementarySymplectic{N}(:B, n+i,i, one(T)) for i in 1:n]
|
||||
c_ijs = [ElementarySymplectic{N}(:B, n+i,j, one(T)) for (i,j) in offdiagonal_indexing(n)]
|
||||
|
||||
S = [a_ijs; b_is; c_ijs]
|
||||
|
||||
S = [S; transpose.(S)]
|
||||
|
||||
return unique(S)
|
||||
end
|
||||
|
||||
function _std_symplectic_form(m::AbstractMatrix)
|
||||
r,c = size(m)
|
||||
r == c || return false
|
||||
iseven(r) || return false
|
||||
|
||||
n = r÷2
|
||||
Ω = zero(m)
|
||||
for i in 1:n
|
||||
Ω[2i-1:2i, 2i-1:2i] .= [0 -1; 1 0]
|
||||
end
|
||||
return Ω
|
||||
end
|
||||
|
||||
function issymplectic(mat::M, Ω = _std_symplectic_form(mat)) where M <: AbstractMatrix
|
||||
r, c = size(mat)
|
||||
return Ω == transpose(mat) * Ω * mat
|
||||
end
|
41
src/matrix_groups/abstract.jl
Normal file
41
src/matrix_groups/abstract.jl
Normal file
@ -0,0 +1,41 @@
|
||||
abstract type MatrixGroup{N, T} <: Groups.AbstractFPGroup end
|
||||
const MatrixGroupElement{N, T} = Groups.AbstractFPGroupElement{<:MatrixGroup{N, T}}
|
||||
|
||||
Base.isone(g::MatrixGroupElement{N, T}) where {N, T} = matrix_repr(g) == I
|
||||
|
||||
function Base.:(==)(m1::M1, m2::M2) where {M1<:MatrixGroupElement, M2<:MatrixGroupElement}
|
||||
parent(m1) === parent(m2) || return false
|
||||
word(m1) == word(m2) && return true
|
||||
return matrix_repr(m1) == matrix_repr(m2)
|
||||
end
|
||||
|
||||
Base.size(m::MatrixGroupElement{N}) where N = (N, N)
|
||||
Base.eltype(m::MatrixGroupElement{N, T}) where {N, T} = T
|
||||
|
||||
# three structural assumptions about matrix groups
|
||||
Groups.word(sl::MatrixGroupElement) = sl.word
|
||||
Base.parent(sl::MatrixGroupElement) = sl.parent
|
||||
Groups.alphabet(M::MatrixGroup) = M.alphabet
|
||||
Groups.rewriting(M::MatrixGroup) = alphabet(M)
|
||||
|
||||
Base.hash(sl::MatrixGroupElement, h::UInt) =
|
||||
hash(matrix_repr(sl), hash(parent(sl), h))
|
||||
|
||||
Base.getindex(sl::MatrixGroupElement, i, j) = matrix_repr(sl)[i,j]
|
||||
# Base.iterate(sl::MatrixGroupElement) = iterate(sl.elts)
|
||||
# Base.iterate(sl::MatrixGroupElement, state) = iterate(sl.elts, state)
|
||||
|
||||
function matrix_repr(m::MatrixGroupElement{N, T}) where {N, T}
|
||||
isempty(word(m)) && return StaticArrays.SMatrix{N, N, T}(I)
|
||||
A = alphabet(parent(m))
|
||||
return prod(matrix_repr(A[l]) for l in word(m))
|
||||
end
|
||||
|
||||
function Base.rand(
|
||||
rng::Random.AbstractRNG,
|
||||
rs::Random.SamplerTrivial{<:MatrixGroup},
|
||||
)
|
||||
Mgroup = rs[]
|
||||
S = gens(Mgroup)
|
||||
return prod(g -> rand(Bool) ? g : inv(g), rand(S, rand(1:30)))
|
||||
end
|
31
src/matrix_groups/eltary_matrices.jl
Normal file
31
src/matrix_groups/eltary_matrices.jl
Normal file
@ -0,0 +1,31 @@
|
||||
using Groups
|
||||
using StaticArrays
|
||||
|
||||
struct ElementaryMatrix{N, T} <: Groups.GSymbol
|
||||
i::Int
|
||||
j::Int
|
||||
val::T
|
||||
ElementaryMatrix{N}(i, j, val=1) where N =
|
||||
(@assert i≠j; new{N, typeof(val)}(i, j, val))
|
||||
end
|
||||
|
||||
function Base.show(io::IO, e::ElementaryMatrix)
|
||||
print(io, 'E', Groups.subscriptify(e.i), Groups.subscriptify(e.j))
|
||||
!isone(e.val) && print(io, "^$(e.val)")
|
||||
end
|
||||
|
||||
Base.:(==)(e::ElementaryMatrix{N}, f::ElementaryMatrix{N}) where N =
|
||||
e.i == f.i && e.j == f.j && e.val == f.val
|
||||
|
||||
Base.hash(e::ElementaryMatrix, h::UInt) =
|
||||
hash(typeof(e), hash((e.i, e.j, e.val), h))
|
||||
|
||||
Base.inv(e::ElementaryMatrix{N}) where N =
|
||||
ElementaryMatrix{N}(e.i, e.j, -e.val)
|
||||
|
||||
function matrix_repr(e::ElementaryMatrix{N, T}) where {N, T}
|
||||
m = StaticArrays.MMatrix{N, N, T}(I)
|
||||
m[e.i, e.j] = e.val
|
||||
x = StaticArrays.SMatrix{N, N}(m)
|
||||
return x
|
||||
end
|
85
src/matrix_groups/eltary_symplectic.jl
Normal file
85
src/matrix_groups/eltary_symplectic.jl
Normal file
@ -0,0 +1,85 @@
|
||||
using Groups
|
||||
using StaticArrays
|
||||
|
||||
struct ElementarySymplectic{N, T} <: Groups.GSymbol
|
||||
symbol::Symbol
|
||||
i::Int
|
||||
j::Int
|
||||
val::T
|
||||
function ElementarySymplectic{N}(s::Symbol, i::Integer, j::Integer, val=1) where N
|
||||
@assert s ∈ (:A, :B)
|
||||
@assert iseven(N)
|
||||
n = N÷2
|
||||
if s === :A
|
||||
@assert 1 ≤ i ≤ n && 1 ≤ j ≤ n && i ≠ j
|
||||
elseif s === :B
|
||||
@assert xor(1 ≤ i ≤ n, 1 ≤ j ≤ n) && xor(n < i ≤ N, n < j ≤ N)
|
||||
end
|
||||
return new{N, typeof(val)}(s, i, j, val)
|
||||
end
|
||||
end
|
||||
|
||||
function Base.show(io::IO, s::ElementarySymplectic)
|
||||
i, j = Groups.subscriptify(s.i), Groups.subscriptify(s.j)
|
||||
print(io, s.symbol, i, j)
|
||||
!isone(s.val) && print(io, "^$(s.val)")
|
||||
end
|
||||
|
||||
function Base.show(io::IO, ::MIME"text/plain", s::ElementarySymplectic)
|
||||
print(io, s)
|
||||
print(io, " → corresponding root: ")
|
||||
print(io, Roots.Root(s))
|
||||
end
|
||||
|
||||
_ind(s::ElementarySymplectic{N}) where N = (s.i, s.j)
|
||||
_local_ind(N_half::Integer, i::Integer) = ifelse(i<=N_half, i, i-N_half)
|
||||
function _dual_ind(s::ElementarySymplectic{N}) where N
|
||||
if s.symbol === :A && return _ind(s)
|
||||
else#if s.symbol === :B
|
||||
return _dual_ind(N÷2, s.i, s.j)
|
||||
end
|
||||
end
|
||||
|
||||
function _dual_ind(N_half, i, j)
|
||||
@assert i <= N_half < j || j <= N_half < i
|
||||
if i <= N_half # && j > N_half
|
||||
i, j = j - N_half, i + N_half
|
||||
else
|
||||
i, j = j + N_half, i - N_half
|
||||
end
|
||||
return i, j
|
||||
end
|
||||
|
||||
function Base.:(==)(s::ElementarySymplectic{N}, t::ElementarySymplectic{M}) where {N, M}
|
||||
N == M || return false
|
||||
s.symbol == t.symbol || return false
|
||||
s.val == t.val || return false
|
||||
return _ind(t) == _ind(s) || _ind(t) == _dual_ind(s)
|
||||
end
|
||||
|
||||
Base.hash(s::ElementarySymplectic, h::UInt) =
|
||||
hash(Set([_ind(s); _dual_ind(s)]), hash(s.symbol, hash(s.val, h)))
|
||||
|
||||
LinearAlgebra.transpose(s::ElementarySymplectic{N}) where N =
|
||||
ElementarySymplectic{N}(s.symbol, s.j, s.i, s.val)
|
||||
|
||||
Base.inv(s::ElementarySymplectic{N}) where N =
|
||||
ElementarySymplectic{N}(s.symbol, s.i, s.j, -s.val)
|
||||
|
||||
function matrix_repr(s::ElementarySymplectic{N, T}) where {N, T}
|
||||
@assert iseven(N)
|
||||
n = div(N, 2)
|
||||
m = StaticArrays.MMatrix{N, N, T}(I)
|
||||
i,j = _ind(s)
|
||||
m[i,j] = s.val
|
||||
if s.symbol === :A
|
||||
m[n+j, n+i] = -s.val
|
||||
else#if s.symbol === :B
|
||||
if i > n
|
||||
m[j+n, i-n] = s.val
|
||||
else
|
||||
m[j-n, i+n] = s.val
|
||||
end
|
||||
end
|
||||
return StaticArrays.SMatrix{N, N}(m)
|
||||
end
|
24
test/matrix_groups.jl
Normal file
24
test/matrix_groups.jl
Normal file
@ -0,0 +1,24 @@
|
||||
using Groups.MatrixGroups
|
||||
|
||||
@testset "Matrix Groups" begin
|
||||
|
||||
@testset "SL(n, ℤ)" begin
|
||||
SL3Z = SpecialLinearGroup{3}(Int8)
|
||||
|
||||
S = gens(SL3Z); union!(S, inv.(S))
|
||||
|
||||
E, sizes = Groups.wlmetric_ball(S, radius=4)
|
||||
|
||||
@test sizes = [13, 121, 883, 5455]
|
||||
|
||||
@testset "GroupsCore conformance" begin
|
||||
test_Group_interface(SL3Z)
|
||||
g = A(rand(1:length(alphabet(SL3Z)), 10))
|
||||
h = A(rand(1:length(alphabet(SL3Z)), 10))
|
||||
|
||||
test_GroupElement_interface(g, h)
|
||||
end
|
||||
|
||||
end
|
||||
|
||||
end
|
@ -25,6 +25,8 @@ include(joinpath(pathof(GroupsCore), "..", "..", "test", "conformance_test.jl"))
|
||||
include("free_groups.jl")
|
||||
include("fp_groups.jl")
|
||||
|
||||
include("matrix_groups.jl")
|
||||
|
||||
include("AutFn.jl")
|
||||
include("AutSigma_41.jl")
|
||||
include("AutSigma3.jl")
|
||||
|
Loading…
Reference in New Issue
Block a user