mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2024-12-25 18:15:29 +01:00
more tests for AutGroup
This commit is contained in:
parent
a6aabf4541
commit
cdbd483e9e
@ -262,7 +262,7 @@ end
|
|||||||
|
|
||||||
function show(io::IO, G::AutGroup)
|
function show(io::IO, G::AutGroup)
|
||||||
print(io, "Automorphism Group of $(G.objectGroup)\n")
|
print(io, "Automorphism Group of $(G.objectGroup)\n")
|
||||||
print(io, "Generated by $(join(G.gens, ","))")
|
print(io, "Generated by $(gens(G))")
|
||||||
end
|
end
|
||||||
|
|
||||||
###############################################################################
|
###############################################################################
|
||||||
|
@ -31,11 +31,6 @@ function DirectPower(G::DirectPowerGroup{N}, H::Group) where N
|
|||||||
return DirectPowerGroup(G.group, N+1)
|
return DirectPowerGroup(G.group, N+1)
|
||||||
end
|
end
|
||||||
|
|
||||||
function DirectPower(R::AbstractAlgebra.Ring, n::Int)
|
|
||||||
@warn "Creating DirectPower of the multilplicative group!"
|
|
||||||
return DirectPowerGroup(MultiplicativeGroup(R), n)
|
|
||||||
end
|
|
||||||
|
|
||||||
struct DirectPowerGroupElem{N, T<:GroupElem} <: GroupElem
|
struct DirectPowerGroupElem{N, T<:GroupElem} <: GroupElem
|
||||||
elts::NTuple{N,T}
|
elts::NTuple{N,T}
|
||||||
end
|
end
|
||||||
@ -188,7 +183,6 @@ end
|
|||||||
###############################################################################
|
###############################################################################
|
||||||
|
|
||||||
order(G::DirectPowerGroup{N}) where N = order(G.group)^N
|
order(G::DirectPowerGroup{N}) where N = order(G.group)^N
|
||||||
Base.length(G::DirectPowerGroup) = order(G)
|
|
||||||
|
|
||||||
function iterate(G::DirectPowerGroup{N}) where N
|
function iterate(G::DirectPowerGroup{N}) where N
|
||||||
elts = collect(G.group)
|
elts = collect(G.group)
|
||||||
@ -212,3 +206,4 @@ function iterate(G::DirectPowerGroup{N}, state) where N
|
|||||||
end
|
end
|
||||||
|
|
||||||
eltype(::Type{DirectPowerGroup{N, G}}) where {N, G} = DirectPowerGroupElem{N, elem_type(G)}
|
eltype(::Type{DirectPowerGroup{N, G}}) where {N, G} = DirectPowerGroupElem{N, elem_type(G)}
|
||||||
|
Base.length(G::DirectPowerGroup) = order(G)
|
||||||
|
@ -6,13 +6,17 @@
|
|||||||
@test_throws MethodError Groups.AutSymbol(:a)
|
@test_throws MethodError Groups.AutSymbol(:a)
|
||||||
@test_throws MethodError Groups.AutSymbol(:a, 1)
|
@test_throws MethodError Groups.AutSymbol(:a, 1)
|
||||||
f = Groups.AutSymbol(:a, 1, Groups.FlipAut(2))
|
f = Groups.AutSymbol(:a, 1, Groups.FlipAut(2))
|
||||||
@test isa(f, Groups.GSymbol)
|
@test f isa Groups.GSymbol
|
||||||
@test isa(f, Groups.AutSymbol)
|
@test f isa Groups.AutSymbol
|
||||||
@test isa(Groups.AutSymbol(perm"(4)"), Groups.AutSymbol)
|
@test Groups.AutSymbol(perm"(4)") isa Groups.AutSymbol
|
||||||
@test isa(Groups.AutSymbol(perm"(1,2,3,4)"), Groups.AutSymbol)
|
@test Groups.AutSymbol(perm"(1,2,3,4)") isa Groups.AutSymbol
|
||||||
@test isa(Groups.transvection_R(1,2), Groups.AutSymbol)
|
@test Groups.transvection_R(1,2) isa Groups.AutSymbol
|
||||||
@test isa(Groups.transvection_R(3,4), Groups.AutSymbol)
|
@test Groups.transvection_R(3,4) isa Groups.AutSymbol
|
||||||
@test isa(Groups.flip(3), Groups.AutSymbol)
|
@test Groups.flip(3) isa Groups.AutSymbol
|
||||||
|
|
||||||
|
@test Groups.id_autsymbol() isa Groups.AutSymbol
|
||||||
|
@test inv(Groups.id_autsymbol()) isa Groups.AutSymbol
|
||||||
|
@test inv(Groups.id_autsymbol()) == Groups.id_autsymbol()
|
||||||
end
|
end
|
||||||
|
|
||||||
a,b,c,d = gens(FreeGroup(4))
|
a,b,c,d = gens(FreeGroup(4))
|
||||||
@ -88,35 +92,44 @@
|
|||||||
@test isa(Automorphism{3}(f), Automorphism)
|
@test isa(Automorphism{3}(f), Automorphism)
|
||||||
@test isa(AutGroup(FreeGroup(3)), AbstractAlgebra.Group)
|
@test isa(AutGroup(FreeGroup(3)), AbstractAlgebra.Group)
|
||||||
@test isa(AutGroup(FreeGroup(1)), Groups.AbstractFPGroup)
|
@test isa(AutGroup(FreeGroup(1)), Groups.AbstractFPGroup)
|
||||||
|
|
||||||
A = AutGroup(FreeGroup(1))
|
A = AutGroup(FreeGroup(1))
|
||||||
@test isa(Groups.gens(A), Vector{Automorphism{1}})
|
@test Groups.gens(A) isa Vector{Automorphism{1}}
|
||||||
@test length(Groups.gens(A)) == 1
|
@test length(Groups.gens(A)) == 1
|
||||||
|
@test length(Groups.gens(Aut(FreeGroup(1)))) == 1
|
||||||
|
@test Groups.gens(A) == [A(Groups.flip(1))]
|
||||||
|
|
||||||
A = AutGroup(FreeGroup(1), special=true)
|
A = AutGroup(FreeGroup(1), special=true)
|
||||||
@test length(Groups.gens(A)) == 0
|
@test isempty(Groups.gens(A))
|
||||||
|
@test Groups.gens(SAut(FreeGroup(1))) == Automorphism{1}[]
|
||||||
|
|
||||||
A = AutGroup(FreeGroup(2))
|
A = AutGroup(FreeGroup(2))
|
||||||
@test length(Groups.gens(A)) == 7
|
@test length(Groups.gens(A)) == 7
|
||||||
Agens = Groups.gens(A)
|
Agens = Groups.gens(A)
|
||||||
|
@test A(first(Agens)) isa Automorphism
|
||||||
|
|
||||||
@test isa(A(Groups.transvection_R(1,2)), Automorphism)
|
@test A(Groups.transvection_R(1,2)) isa Automorphism
|
||||||
@test A(Groups.transvection_R(1,2)) in Agens
|
@test A(Groups.transvection_R(1,2)) in Agens
|
||||||
|
|
||||||
@test isa(A(Groups.transvection_R(2,1)), Automorphism)
|
@test A(Groups.transvection_R(2,1)) isa Automorphism
|
||||||
@test A(Groups.transvection_R(2,1)) in Agens
|
@test A(Groups.transvection_R(2,1)) in Agens
|
||||||
|
|
||||||
@test isa(A(Groups.transvection_R(1,2)), Automorphism)
|
@test A(Groups.transvection_R(1,2)) isa Automorphism
|
||||||
@test A(Groups.transvection_R(1,2)) in Agens
|
@test A(Groups.transvection_R(1,2)) in Agens
|
||||||
|
|
||||||
@test isa(A(Groups.transvection_R(2,1)), Automorphism)
|
@test A(Groups.transvection_R(2,1)) isa Automorphism
|
||||||
@test A(Groups.transvection_R(2,1)) in Agens
|
@test A(Groups.transvection_R(2,1)) in Agens
|
||||||
|
|
||||||
@test isa(A(Groups.flip(1)), Automorphism)
|
@test A(Groups.flip(1)) isa Automorphism
|
||||||
@test A(Groups.flip(1)) in Agens
|
@test A(Groups.flip(1)) in Agens
|
||||||
|
|
||||||
@test isa(A(Groups.flip(2)), Automorphism)
|
@test A(Groups.flip(2)) isa Automorphism
|
||||||
@test A(Groups.flip(2)) in Agens
|
@test A(Groups.flip(2)) in Agens
|
||||||
|
|
||||||
@test isa(A(Groups.AutSymbol(perm"(1,2)")), Automorphism)
|
@test A(Groups.AutSymbol(perm"(1,2)")) isa Automorphism
|
||||||
@test A(Groups.AutSymbol(perm"(1,2)")) in Agens
|
@test A(Groups.AutSymbol(perm"(1,2)")) in Agens
|
||||||
|
|
||||||
|
@test A(Groups.id_autsymbol()) isa Automorphism
|
||||||
end
|
end
|
||||||
|
|
||||||
A = AutGroup(FreeGroup(4))
|
A = AutGroup(FreeGroup(4))
|
||||||
@ -144,8 +157,8 @@
|
|||||||
@test f²^2 == one(A)
|
@test f²^2 == one(A)
|
||||||
@test !isone(f²)
|
@test !isone(f²)
|
||||||
|
|
||||||
a = A(Groups.transvection_L(1,2))*Groups.flip(2)
|
a = A(Groups.λ(1,2))*Groups.ε(2)
|
||||||
b = Groups.flip(2)*A(inv(Groups.transvection_L(1,2)))
|
b = Groups.ε(2)*A(inv(Groups.λ(1,2)))
|
||||||
@test a*b == b*a
|
@test a*b == b*a
|
||||||
@test a^3 * b^3 == one(A)
|
@test a^3 * b^3 == one(A)
|
||||||
g,h = Groups.gens(A)[[1,8]] # (g, h) = (ϱ₁₂, ϱ₃₂)
|
g,h = Groups.gens(A)[[1,8]] # (g, h) = (ϱ₁₂, ϱ₃₂)
|
||||||
|
Loading…
Reference in New Issue
Block a user