mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-12 22:22:32 +01:00
first working version of Automorphisms of surface groups
This commit is contained in:
parent
979ffaccfa
commit
d238854095
@ -8,6 +8,15 @@ struct SurfaceGroup{T, S, R} <: AbstractFPGroup
|
|||||||
rws::R
|
rws::R
|
||||||
end
|
end
|
||||||
|
|
||||||
|
genus(S::SurfaceGroup) = S.genus
|
||||||
|
|
||||||
|
function Base.show(io::IO, S::SurfaceGroup)
|
||||||
|
print(io, "π₁ of the orientable surface of genus $(genus(S))")
|
||||||
|
if S.boundaries > 0
|
||||||
|
print(io, " with $(S.boundaries) boundary components")
|
||||||
|
end
|
||||||
|
end
|
||||||
|
|
||||||
function SurfaceGroup(genus::Integer, boundaries::Integer)
|
function SurfaceGroup(genus::Integer, boundaries::Integer)
|
||||||
@assert genus > 1
|
@assert genus > 1
|
||||||
|
|
||||||
@ -32,36 +41,50 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
|
|||||||
append!(word, [x, x-2, x-1, x-3])
|
append!(word, [x, x-2, x-1, x-3])
|
||||||
end
|
end
|
||||||
comms = Word(word)
|
comms = Word(word)
|
||||||
rels = [ comms => one(comms) ]
|
word_rels = [ comms => one(comms) ]
|
||||||
|
|
||||||
rws = RewritingSystem(rels, KnuthBendix.RecursivePathOrder(Al))
|
rws = RewritingSystem(word_rels, KnuthBendix.RecursivePathOrder(Al))
|
||||||
KnuthBendix.knuthbendix!(rws)
|
KnuthBendix.knuthbendix!(rws)
|
||||||
elseif boundaries == 1
|
elseif boundaries == 1
|
||||||
S = typeof(one(Word(Int[])))
|
S = typeof(one(Word(Int[])))
|
||||||
rels = Pair{S, S}[]
|
word_rels = Pair{S, S}[]
|
||||||
rws = RewritingSystem(rels, KnuthBendix.LenLex(Al))
|
rws = RewritingSystem(word_rels, KnuthBendix.LenLex(Al))
|
||||||
else
|
else
|
||||||
throw("Not Implemented")
|
throw("Not Implemented")
|
||||||
end
|
end
|
||||||
|
|
||||||
|
F = FreeGroup(alphabet(rws))
|
||||||
|
rels = [F(lhs)=>F(rhs) for (lhs,rhs) in word_rels]
|
||||||
|
|
||||||
return SurfaceGroup(genus, boundaries, KnuthBendix.letters(Al)[2:2:end], rels, rws)
|
return SurfaceGroup(genus, boundaries, KnuthBendix.letters(Al)[2:2:end], rels, rws)
|
||||||
end
|
end
|
||||||
|
|
||||||
rewriting(G::SurfaceGroup) = G.rws
|
rewriting(S::SurfaceGroup) = S.rws
|
||||||
KnuthBendix.alphabet(G::SurfaceGroup) = alphabet(rewriting(G))
|
KnuthBendix.alphabet(S::SurfaceGroup) = alphabet(rewriting(S))
|
||||||
relations(G::SurfaceGroup) = G.relations
|
relations(S::SurfaceGroup) = S.relations
|
||||||
|
|
||||||
|
function symplectic_twists(π₁Σ::SurfaceGroup)
|
||||||
|
g = genus(π₁Σ)
|
||||||
|
|
||||||
|
saut = SpecialAutomorphismGroup(FreeGroup(2g))
|
||||||
|
|
||||||
|
Aij = [SymplecticMappingClass(π₁Σ, saut, :A, i, j) for i in 1:g for j in 1:g if i≠j]
|
||||||
|
|
||||||
|
Bij = [SymplecticMappingClass(π₁Σ, saut, :B, i, j) for i in 1:g for j in i+1:g]
|
||||||
|
|
||||||
|
mBij = [SymplecticMappingClass(π₁Σ, saut, :B, i, j, minus=true) for i in 1:g for j in i+1:g]
|
||||||
|
|
||||||
function mapping_class_group(genus::Integer, punctures::Integer)
|
Bii = [SymplecticMappingClass(π₁Σ, saut, :B, i, i) for i in 1:g]
|
||||||
Σ = surface_group(genus, punctures)
|
|
||||||
|
|
||||||
|
mBii = [SymplecticMappingClass(π₁Σ, saut, :B, i, i, minus=true) for i in 1:g]
|
||||||
|
|
||||||
|
return [Aij; Bij; mBij; Bii; mBii]
|
||||||
return New.AutomorphismGroup(Σ, S, rws, ntuple(i -> gens(F, i), n))
|
|
||||||
end
|
end
|
||||||
|
|
||||||
KnuthBendix.alphabet(G::AutomorphismGroup{<:SurfaceGroup}) = alphabet(rewriting(G))
|
KnuthBendix.alphabet(G::AutomorphismGroup{<:SurfaceGroup}) = rewriting(G)
|
||||||
|
|
||||||
|
function AutomorphismGroup(π₁Σ::SurfaceGroup; kwargs...)
|
||||||
|
S = vcat(symplectic_twists(π₁Σ)...)
|
||||||
|
A = Alphabet(S)
|
||||||
|
return AutomorphismGroup(π₁Σ, S, A, ntuple(i->gens(π₁Σ, i), 2genus(π₁Σ)))
|
||||||
|
end
|
||||||
|
@ -1,73 +1,32 @@
|
|||||||
struct SymplecticMappingClass{N, T} <: GSymbol
|
struct ΡΛ
|
||||||
id::Symbol # :A, :B
|
id::Symbol
|
||||||
i::UInt
|
A::Alphabet
|
||||||
j::UInt
|
N::Int
|
||||||
minus::Bool
|
|
||||||
inv::Bool
|
|
||||||
images::NTuple{N, T}
|
|
||||||
invimages::NTuple{N, T}
|
|
||||||
|
|
||||||
function SymplecticMappingClass{N}(G, id, i, j, minus=false, inv=false) where N
|
|
||||||
@assert i > 0 && j > 0
|
|
||||||
id === :A && @assert i ≠ j
|
|
||||||
|
|
||||||
g = if id === :A
|
|
||||||
Te(G, i, j) *
|
|
||||||
Ta(N, i)^-1 *
|
|
||||||
Tα(N, i) *
|
|
||||||
Ta(N, i) *
|
|
||||||
Te(G, i, j)^-1 *
|
|
||||||
Tα(N,i)^-1 *
|
|
||||||
Ta(N, j)^-1
|
|
||||||
elseif id === :B
|
|
||||||
if !minus
|
|
||||||
if i ≠ j
|
|
||||||
x = Ta(N, j) * Ta(N, i)^-1 * Tα(N, j) * Te(G,i,j)
|
|
||||||
δ = x * Tα(N, i) * x^-1
|
|
||||||
Tα(N, i) * Tα(N, j) * inv(δ)
|
|
||||||
else
|
|
||||||
Tα(N, i)^-1
|
|
||||||
end
|
|
||||||
else
|
|
||||||
if i ≠ j
|
|
||||||
Ta(N, i) * Ta(N, j) * Te(G, i, j)^-1
|
|
||||||
else
|
|
||||||
Ta(N, i)
|
|
||||||
end
|
|
||||||
end
|
|
||||||
else
|
|
||||||
throw("Type not recognized: $id")
|
|
||||||
end
|
|
||||||
|
|
||||||
res = new(id, i, j, minus, inv,
|
|
||||||
|
|
||||||
|
|
||||||
)
|
|
||||||
|
|
||||||
return res
|
|
||||||
end
|
|
||||||
end
|
end
|
||||||
|
|
||||||
_indexing(n) = [(i, j) for i = 1:n for j in 1:n if i ≠ j]
|
function Base.getindex(rl::ΡΛ, i::Integer, j::Integer)
|
||||||
_indexing_increasing(n) = [(i, j) for i = 1:n for j = i+1:n]
|
@assert 1 ≤ i ≤ rl.N
|
||||||
|
@assert 1 ≤ j ≤ rl.N
|
||||||
|
@assert i ≠ j
|
||||||
|
@assert rl.id ∈ (:λ, :ϱ)
|
||||||
|
rl.id == :λ && return Word([rl.A[λ(i, j)]])
|
||||||
|
rl.id == :ϱ && return Word([rl.A[ϱ(i, j)]])
|
||||||
|
end
|
||||||
|
|
||||||
_λs(N, A) = [ (i == j ? "aaaarggh..." : Word([A[λ(i, j)]])) for i = 1:N, j = 1:N]
|
function Te_diagonal(λ::ΡΛ, ϱ::ΡΛ, i::Integer)
|
||||||
_ϱs(N, A) = [ (i == j ? "aaaarggh..." : Word([A[ϱ(i, j)]])) for i = 1:N, j = 1:N]
|
@assert λ.N == ϱ.N
|
||||||
|
@assert λ.id == :λ && ϱ.id == :ϱ
|
||||||
|
|
||||||
function Te_diagonal(G, i::Integer)
|
N = λ.N
|
||||||
N = ngens(object(G))
|
|
||||||
# @assert N == size(λ, 1) == size(ϱ, 1)
|
|
||||||
@assert iseven(N)
|
@assert iseven(N)
|
||||||
n = N ÷ 2
|
n = N ÷ 2
|
||||||
j = i + 1
|
j = i + 1
|
||||||
@assert 1 <= i < n
|
@assert 1 <= i < n
|
||||||
|
|
||||||
A = KnuthBendix.alphabet(G)
|
A = λ.A
|
||||||
λ = _λs(N, A)
|
|
||||||
ϱ = _ϱs(N, A)
|
|
||||||
|
|
||||||
# comments are for i,j = 1,2
|
# comments are for i,j = 1,2
|
||||||
g = one(word_type(G))
|
g = one(Word(Int[]))
|
||||||
g *= λ[n+j, n+i] # β ↦ α*β
|
g *= λ[n+j, n+i] # β ↦ α*β
|
||||||
g *= λ[n+i, i] * inv(A, ϱ[n+i, j]) # α ↦ a*α*b^-1
|
g *= λ[n+i, i] * inv(A, ϱ[n+i, j]) # α ↦ a*α*b^-1
|
||||||
g *= inv(A, λ[n+j, n+i]) # β ↦ b*α^-1*a^-1*α*β
|
g *= inv(A, λ[n+j, n+i]) # β ↦ b*α^-1*a^-1*α*β
|
||||||
@ -75,40 +34,44 @@ function Te_diagonal(G, i::Integer)
|
|||||||
g *= inv(A, λ[j, n+i]) # b ↦ b*α^-1*a^-1*α
|
g *= inv(A, λ[j, n+i]) # b ↦ b*α^-1*a^-1*α
|
||||||
g *= inv(A, ϱ[j, n+i]) * ϱ[j, i] # b ↦ b*α^-1*a^-1*α*b*α^-1
|
g *= inv(A, ϱ[j, n+i]) * ϱ[j, i] # b ↦ b*α^-1*a^-1*α*b*α^-1
|
||||||
g *= ϱ[j, n+i] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
|
g *= ϱ[j, n+i] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
|
||||||
return G(g)
|
return g
|
||||||
end
|
end
|
||||||
|
|
||||||
function Te_lantern(b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
|
function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
|
||||||
a₀ = (a₁ * a₂ * a₃)^4 * b₀^-1
|
a₀ = (a₁ * a₂ * a₃)^4 * inv(A, b₀)
|
||||||
X = a₄ * a₅ * a₃ * a₄
|
X = a₄ * a₅ * a₃ * a₄
|
||||||
b₁ = X^-1 * a₀ * X
|
b₁ = inv(A, X) * a₀ * X
|
||||||
Y = a₂ * a₃ * a₁ * a₂
|
Y = a₂ * a₃ * a₁ * a₂
|
||||||
return Y^-1 * b₁ * Y # b₂
|
return inv(A, Y) * b₁ * Y # b₂
|
||||||
end
|
end
|
||||||
|
|
||||||
Ta(N, i::Integer) = λ[N÷2+i, i]
|
Ta(λ::ΡΛ, i::Integer) = (@assert λ.id == :λ;
|
||||||
Tα(N, i::Integer, λ, A) = inv(A, λ[i, N÷2+i])
|
λ[λ.N÷2+i, i])
|
||||||
|
Tα(λ::ΡΛ, i::Integer) = (@assert λ.id == :λ;
|
||||||
|
inv(λ.A, λ[i, λ.N÷2+i]))
|
||||||
|
|
||||||
function Te(G, i, j)
|
function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
|
||||||
@assert i ≠ j
|
@assert i ≠ j
|
||||||
i, j = i < j ? (i, j) : (j, i)
|
i, j = i < j ? (i, j) : (j, i)
|
||||||
|
|
||||||
N = ngens(object(G))
|
@assert λ.N == ϱ.N
|
||||||
|
@assert λ.A == ϱ.A
|
||||||
|
@assert λ.id == :λ && ϱ.id == :ϱ
|
||||||
|
|
||||||
A = KnuthBendix.alphabet(G)
|
@assert 1 ≤ i ≤ λ.N
|
||||||
λ = _λs(N, A)
|
@assert 1 ≤ j ≤ λ.N
|
||||||
ϱ = _ϱs(N, A)
|
|
||||||
|
|
||||||
if j == i + 1
|
if j == i + 1
|
||||||
return Te_diagonal(G, i)
|
return Te_diagonal(λ, ϱ, i)
|
||||||
else
|
else
|
||||||
return Te_lantern(
|
return Te_lantern(
|
||||||
Ta(N, i + 1, λ),
|
λ.A,
|
||||||
Ta(N, i, λ),
|
Ta(λ, i + 1),
|
||||||
Tα(N, i, λ, A),
|
Ta(λ, i),
|
||||||
Te(N, i, i + 1),
|
Tα(λ, i),
|
||||||
Tα(N, i + 1, λ, A),
|
Te(λ, ϱ, i, i + 1),
|
||||||
Te(N, i + 1, j),
|
Tα(λ, i + 1),
|
||||||
|
Te(λ, ϱ, i + 1, j),
|
||||||
)
|
)
|
||||||
end
|
end
|
||||||
end
|
end
|
||||||
@ -116,16 +79,136 @@ end
|
|||||||
function mcg_twists(genus::Integer)
|
function mcg_twists(genus::Integer)
|
||||||
genus < 3 && throw("Not Implemented: genus = $genus < 3")
|
genus < 3 && throw("Not Implemented: genus = $genus < 3")
|
||||||
|
|
||||||
G = SpecialAutomorphismGroup(FreeGroup(2genus))
|
G = SpecialAutomorphismGroup(FreeGroup(2genus), maxrules = 1000)
|
||||||
A = KnuthBendix.alphabet(G)
|
A = KnuthBendix.alphabet(G)
|
||||||
|
|
||||||
λ = _λs(G)
|
λ = ΡΛ(:λ, A, 2genus)
|
||||||
ϱ = _ϱs(G)
|
ϱ = ΡΛ(:ϱ, A, 2genus)
|
||||||
|
|
||||||
Tas = [Ta(G, i, λ) for i in 1:genus]
|
Tas = [Ta(λ, i) for i in 1:genus]
|
||||||
Tαs = [Tα(G, i, λ, A) for i in 1:genus]
|
Tαs = [Tα(λ, i) for i in 1:genus]
|
||||||
|
|
||||||
Tes = [Te(G, i, j, λ, ϱ) for (i,j) in _indexing_increasing(genus)]
|
idcs = ((i, j) for i in 1:genus for j in i+1:genus)
|
||||||
|
Tes = [Te(λ, ϱ, i, j) for (i, j) in idcs]
|
||||||
|
|
||||||
return Tas, Tαs, Tes
|
return Tas, Tαs, Tes
|
||||||
end
|
end
|
||||||
|
|
||||||
|
struct SymplecticMappingClass{N,T} <: GSymbol
|
||||||
|
id::Symbol # :A, :B
|
||||||
|
i::UInt
|
||||||
|
j::UInt
|
||||||
|
minus::Bool
|
||||||
|
inv::Bool
|
||||||
|
images::NTuple{N,T}
|
||||||
|
invimages::NTuple{N,T}
|
||||||
|
end
|
||||||
|
|
||||||
|
function SymplecticMappingClass(
|
||||||
|
Σ::SurfaceGroup,
|
||||||
|
sautFn,
|
||||||
|
id::Symbol,
|
||||||
|
i::Integer,
|
||||||
|
j::Integer;
|
||||||
|
minus = false,
|
||||||
|
inverse = false,
|
||||||
|
)
|
||||||
|
@assert i > 0 && j > 0
|
||||||
|
id === :A && @assert i ≠ j
|
||||||
|
@assert 2genus(Σ) == ngens(object(sautFn))
|
||||||
|
|
||||||
|
A = KnuthBendix.alphabet(sautFn)
|
||||||
|
λ = ΡΛ(:λ, A, 2genus(Σ))
|
||||||
|
ϱ = ΡΛ(:ϱ, A, 2genus(Σ))
|
||||||
|
|
||||||
|
w = if id === :A
|
||||||
|
Te(λ, ϱ, i, j) *
|
||||||
|
inv(A, Ta(λ, i)) *
|
||||||
|
Tα(λ, i) *
|
||||||
|
Ta(λ, i) *
|
||||||
|
inv(A, Te(λ, ϱ, i, j)) *
|
||||||
|
inv(A, Tα(λ, i)) *
|
||||||
|
inv(A, Ta(λ, j))
|
||||||
|
elseif id === :B
|
||||||
|
if !minus
|
||||||
|
if i ≠ j
|
||||||
|
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j)
|
||||||
|
δ = x * Tα(λ, i) * inv(A, x)
|
||||||
|
Tα(λ, i) * Tα(λ, j) * inv(A, δ)
|
||||||
|
else
|
||||||
|
inv(A, Tα(λ, i))
|
||||||
|
end
|
||||||
|
else
|
||||||
|
if i ≠ j
|
||||||
|
Ta(λ, i) * Ta(λ, j) * inv(A, Te(λ, ϱ, i, j))
|
||||||
|
else
|
||||||
|
Ta(λ, i)
|
||||||
|
end
|
||||||
|
end
|
||||||
|
else
|
||||||
|
throw("Type not recognized: $id")
|
||||||
|
end
|
||||||
|
|
||||||
|
g = sautFn(w)
|
||||||
|
|
||||||
|
d = ntuple(i->gens(Σ, i), ngens(Σ))
|
||||||
|
|
||||||
|
img = evaluate!(deepcopy(d), g)
|
||||||
|
invim = evaluate!(d, inv(g))
|
||||||
|
|
||||||
|
img, invim = inverse ? (invim, img) : (img, invim)
|
||||||
|
|
||||||
|
res = SymplecticMappingClass(id, UInt(i), UInt(j), minus, inverse, img, invim)
|
||||||
|
|
||||||
|
return res
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.show(io::IO, smc::SymplecticMappingClass)
|
||||||
|
smc.minus && print(io, 'm')
|
||||||
|
if smc.i < 10 && smc.j < 10
|
||||||
|
print(io, smc.id, subscriptify(smc.i), subscriptify(smc.j))
|
||||||
|
else
|
||||||
|
print(io, smc.id, subscriptify(smc.i), ".", subscriptify(smc.j))
|
||||||
|
end
|
||||||
|
smc.inv && print(io, "^-1")
|
||||||
|
end
|
||||||
|
|
||||||
|
function Base.inv(m::SymplecticMappingClass)
|
||||||
|
return SymplecticMappingClass(m.id, m.i, m.j, m.minus, !m.inv, m.invimages, m.images)
|
||||||
|
end
|
||||||
|
|
||||||
|
function evaluate!(
|
||||||
|
t::NTuple{N,T},
|
||||||
|
smc::SymplecticMappingClass,
|
||||||
|
A::Alphabet,
|
||||||
|
tmp = one(first(t)),
|
||||||
|
) where {N,T}
|
||||||
|
img = smc.inv ? smc.invimages : smc.images
|
||||||
|
|
||||||
|
# need a map from generators to letters of the alphabet!
|
||||||
|
# TODO: move to SymplecticMappingClass
|
||||||
|
gens_idcs = let G = parent(first(t))
|
||||||
|
Dict(A[G.gens[i]] => i for i in 1:ngens(G))
|
||||||
|
end
|
||||||
|
|
||||||
|
for elt in t
|
||||||
|
copyto!(tmp, elt)
|
||||||
|
resize!(word(elt), 0)
|
||||||
|
for idx in word(tmp)
|
||||||
|
# @show idx
|
||||||
|
k = if haskey(gens_idcs, idx)
|
||||||
|
img[gens_idcs[idx]]
|
||||||
|
else
|
||||||
|
inv(img[gens_idcs[inv(A, idx)]])
|
||||||
|
end
|
||||||
|
append!(word(elt), word(k))
|
||||||
|
end
|
||||||
|
_setnormalform!(elt, false)
|
||||||
|
_setvalidhash!(elt, false)
|
||||||
|
|
||||||
|
normalform!(tmp, elt)
|
||||||
|
copyto!(elt, tmp)
|
||||||
|
end
|
||||||
|
|
||||||
|
return t
|
||||||
|
end
|
||||||
|
Loading…
Reference in New Issue
Block a user