1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-12 22:22:32 +01:00

first working version of Automorphisms of surface groups

This commit is contained in:
Marek Kaluba 2021-06-07 20:26:18 +02:00
parent 979ffaccfa
commit d238854095
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 202 additions and 96 deletions

View File

@ -8,6 +8,15 @@ struct SurfaceGroup{T, S, R} <: AbstractFPGroup
rws::R rws::R
end end
genus(S::SurfaceGroup) = S.genus
function Base.show(io::IO, S::SurfaceGroup)
print(io, "π₁ of the orientable surface of genus $(genus(S))")
if S.boundaries > 0
print(io, " with $(S.boundaries) boundary components")
end
end
function SurfaceGroup(genus::Integer, boundaries::Integer) function SurfaceGroup(genus::Integer, boundaries::Integer)
@assert genus > 1 @assert genus > 1
@ -32,36 +41,50 @@ function SurfaceGroup(genus::Integer, boundaries::Integer)
append!(word, [x, x-2, x-1, x-3]) append!(word, [x, x-2, x-1, x-3])
end end
comms = Word(word) comms = Word(word)
rels = [ comms => one(comms) ] word_rels = [ comms => one(comms) ]
rws = RewritingSystem(rels, KnuthBendix.RecursivePathOrder(Al)) rws = RewritingSystem(word_rels, KnuthBendix.RecursivePathOrder(Al))
KnuthBendix.knuthbendix!(rws) KnuthBendix.knuthbendix!(rws)
elseif boundaries == 1 elseif boundaries == 1
S = typeof(one(Word(Int[]))) S = typeof(one(Word(Int[])))
rels = Pair{S, S}[] word_rels = Pair{S, S}[]
rws = RewritingSystem(rels, KnuthBendix.LenLex(Al)) rws = RewritingSystem(word_rels, KnuthBendix.LenLex(Al))
else else
throw("Not Implemented") throw("Not Implemented")
end end
F = FreeGroup(alphabet(rws))
rels = [F(lhs)=>F(rhs) for (lhs,rhs) in word_rels]
return SurfaceGroup(genus, boundaries, KnuthBendix.letters(Al)[2:2:end], rels, rws) return SurfaceGroup(genus, boundaries, KnuthBendix.letters(Al)[2:2:end], rels, rws)
end end
rewriting(G::SurfaceGroup) = G.rws rewriting(S::SurfaceGroup) = S.rws
KnuthBendix.alphabet(G::SurfaceGroup) = alphabet(rewriting(G)) KnuthBendix.alphabet(S::SurfaceGroup) = alphabet(rewriting(S))
relations(G::SurfaceGroup) = G.relations relations(S::SurfaceGroup) = S.relations
function symplectic_twists(π₁Σ::SurfaceGroup)
g = genus(π₁Σ)
saut = SpecialAutomorphismGroup(FreeGroup(2g))
Aij = [SymplecticMappingClass(π₁Σ, saut, :A, i, j) for i in 1:g for j in 1:g if i≠j]
Bij = [SymplecticMappingClass(π₁Σ, saut, :B, i, j) for i in 1:g for j in i+1:g]
mBij = [SymplecticMappingClass(π₁Σ, saut, :B, i, j, minus=true) for i in 1:g for j in i+1:g]
function mapping_class_group(genus::Integer, punctures::Integer) Bii = [SymplecticMappingClass(π₁Σ, saut, :B, i, i) for i in 1:g]
Σ = surface_group(genus, punctures)
mBii = [SymplecticMappingClass(π₁Σ, saut, :B, i, i, minus=true) for i in 1:g]
return [Aij; Bij; mBij; Bii; mBii]
return New.AutomorphismGroup(Σ, S, rws, ntuple(i -> gens(F, i), n))
end end
KnuthBendix.alphabet(G::AutomorphismGroup{<:SurfaceGroup}) = alphabet(rewriting(G)) KnuthBendix.alphabet(G::AutomorphismGroup{<:SurfaceGroup}) = rewriting(G)
function AutomorphismGroup(π₁Σ::SurfaceGroup; kwargs...)
S = vcat(symplectic_twists(π₁Σ)...)
A = Alphabet(S)
return AutomorphismGroup(π₁Σ, S, A, ntuple(i->gens(π₁Σ, i), 2genus(π₁Σ)))
end

View File

@ -1,73 +1,32 @@
struct SymplecticMappingClass{N, T} <: GSymbol struct ΡΛ
id::Symbol # :A, :B id::Symbol
i::UInt A::Alphabet
j::UInt N::Int
minus::Bool
inv::Bool
images::NTuple{N, T}
invimages::NTuple{N, T}
function SymplecticMappingClass{N}(G, id, i, j, minus=false, inv=false) where N
@assert i > 0 && j > 0
id === :A && @assert i j
g = if id === :A
Te(G, i, j) *
Ta(N, i)^-1 *
Tα(N, i) *
Ta(N, i) *
Te(G, i, j)^-1 *
Tα(N,i)^-1 *
Ta(N, j)^-1
elseif id === :B
if !minus
if i j
x = Ta(N, j) * Ta(N, i)^-1 * Tα(N, j) * Te(G,i,j)
δ = x * Tα(N, i) * x^-1
Tα(N, i) * Tα(N, j) * inv(δ)
else
Tα(N, i)^-1
end
else
if i j
Ta(N, i) * Ta(N, j) * Te(G, i, j)^-1
else
Ta(N, i)
end
end
else
throw("Type not recognized: $id")
end
res = new(id, i, j, minus, inv,
)
return res
end
end end
_indexing(n) = [(i, j) for i = 1:n for j in 1:n if i j] function Base.getindex(rl::ΡΛ, i::Integer, j::Integer)
_indexing_increasing(n) = [(i, j) for i = 1:n for j = i+1:n] @assert 1 i rl.N
@assert 1 j rl.N
@assert i j
@assert rl.id (, :ϱ)
rl.id == && return Word([rl.A[λ(i, j)]])
rl.id == :ϱ && return Word([rl.A[ϱ(i, j)]])
end
_λs(N, A) = [ (i == j ? "aaaarggh..." : Word([A[λ(i, j)]])) for i = 1:N, j = 1:N] function Te_diagonal(λ::ΡΛ, ϱ::ΡΛ, i::Integer)
_ϱs(N, A) = [ (i == j ? "aaaarggh..." : Word([A[ϱ(i, j)]])) for i = 1:N, j = 1:N] @assert λ.N == ϱ.N
@assert λ.id == && ϱ.id == :ϱ
function Te_diagonal(G, i::Integer) N = λ.N
N = ngens(object(G))
# @assert N == size(λ, 1) == size(ϱ, 1)
@assert iseven(N) @assert iseven(N)
n = N ÷ 2 n = N ÷ 2
j = i + 1 j = i + 1
@assert 1 <= i < n @assert 1 <= i < n
A = KnuthBendix.alphabet(G) A = λ.A
λ = _λs(N, A)
ϱ = _ϱs(N, A)
# comments are for i,j = 1,2 # comments are for i,j = 1,2
g = one(word_type(G)) g = one(Word(Int[]))
g *= λ[n+j, n+i] # β ↦ α g *= λ[n+j, n+i] # β ↦ α
g *= λ[n+i, i] * inv(A, ϱ[n+i, j]) # α ↦ a*α*b^-1 g *= λ[n+i, i] * inv(A, ϱ[n+i, j]) # α ↦ a*α*b^-1
g *= inv(A, λ[n+j, n+i]) # β ↦ b*α^-1*a^-1*α g *= inv(A, λ[n+j, n+i]) # β ↦ b*α^-1*a^-1*α
@ -75,40 +34,44 @@ function Te_diagonal(G, i::Integer)
g *= inv(A, λ[j, n+i]) # b ↦ b*α^-1*a^-1*α g *= inv(A, λ[j, n+i]) # b ↦ b*α^-1*a^-1*α
g *= inv(A, ϱ[j, n+i]) * ϱ[j, i] # b ↦ b*α^-1*a^-1*α*b*α^-1 g *= inv(A, ϱ[j, n+i]) * ϱ[j, i] # b ↦ b*α^-1*a^-1*α*b*α^-1
g *= ϱ[j, n+i] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1 g *= ϱ[j, n+i] # b ↦ b*α^-1*a^-1*α*b*α^-1*a*α*b^-1
return G(g) return g
end end
function Te_lantern(b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T} function Te_lantern(A::Alphabet, b₀::T, a₁::T, a₂::T, a₃::T, a₄::T, a₅::T) where {T}
a₀ = (a₁ * a₂ * a₃)^4 * b₀^-1 a₀ = (a₁ * a₂ * a₃)^4 * inv(A, b₀)
X = a₄ * a₅ * a₃ * a₄ X = a₄ * a₅ * a₃ * a₄
b₁ = X^-1 * a₀ * X b₁ = inv(A, X) * a₀ * X
Y = a₂ * a₃ * a₁ * a₂ Y = a₂ * a₃ * a₁ * a₂
return Y^-1 * b₁ * Y # b₂ return inv(A, Y) * b₁ * Y # b₂
end end
Ta(N, i::Integer) = λ[N÷2+i, i] Ta(λ::ΡΛ, i::Integer) = (@assert λ.id == ;
Tα(N, i::Integer, λ, A) = inv(A, λ[i, N÷2+i]) λ[λ.N÷2+i, i])
Tα(λ::ΡΛ, i::Integer) = (@assert λ.id == ;
inv(λ.A, λ[i, λ.N÷2+i]))
function Te(G, i, j) function Te(λ::ΡΛ, ϱ::ΡΛ, i, j)
@assert i j @assert i j
i, j = i < j ? (i, j) : (j, i) i, j = i < j ? (i, j) : (j, i)
N = ngens(object(G)) @assert λ.N == ϱ.N
@assert λ.A == ϱ.A
@assert λ.id == && ϱ.id == :ϱ
A = KnuthBendix.alphabet(G) @assert 1 i λ.N
λ = _λs(N, A) @assert 1 j λ.N
ϱ = _ϱs(N, A)
if j == i + 1 if j == i + 1
return Te_diagonal(G, i) return Te_diagonal(λ, ϱ, i)
else else
return Te_lantern( return Te_lantern(
Ta(N, i + 1, λ), λ.A,
Ta(N, i, λ), Ta(λ, i + 1),
Tα(N, i, λ, A), Ta(λ, i),
Te(N, i, i + 1), Tα(λ, i),
Tα(N, i + 1, λ, A), Te(λ, ϱ, i, i + 1),
Te(N, i + 1, j), Tα(λ, i + 1),
Te(λ, ϱ, i + 1, j),
) )
end end
end end
@ -116,16 +79,136 @@ end
function mcg_twists(genus::Integer) function mcg_twists(genus::Integer)
genus < 3 && throw("Not Implemented: genus = $genus < 3") genus < 3 && throw("Not Implemented: genus = $genus < 3")
G = SpecialAutomorphismGroup(FreeGroup(2genus)) G = SpecialAutomorphismGroup(FreeGroup(2genus), maxrules = 1000)
A = KnuthBendix.alphabet(G) A = KnuthBendix.alphabet(G)
λ = _λs(G) λ = ΡΛ(, A, 2genus)
ϱ = _ϱs(G) ϱ = ΡΛ(:ϱ, A, 2genus)
Tas = [Ta(G, i, λ) for i in 1:genus] Tas = [Ta(λ, i) for i in 1:genus]
Tαs = [Tα(G, i, λ, A) for i in 1:genus] Tαs = [Tα(λ, i) for i in 1:genus]
Tes = [Te(G, i, j, λ, ϱ) for (i,j) in _indexing_increasing(genus)] idcs = ((i, j) for i in 1:genus for j in i+1:genus)
Tes = [Te(λ, ϱ, i, j) for (i, j) in idcs]
return Tas, Tαs, Tes return Tas, Tαs, Tes
end end
struct SymplecticMappingClass{N,T} <: GSymbol
id::Symbol # :A, :B
i::UInt
j::UInt
minus::Bool
inv::Bool
images::NTuple{N,T}
invimages::NTuple{N,T}
end
function SymplecticMappingClass(
Σ::SurfaceGroup,
sautFn,
id::Symbol,
i::Integer,
j::Integer;
minus = false,
inverse = false,
)
@assert i > 0 && j > 0
id === :A && @assert i j
@assert 2genus(Σ) == ngens(object(sautFn))
A = KnuthBendix.alphabet(sautFn)
λ = ΡΛ(, A, 2genus(Σ))
ϱ = ΡΛ(:ϱ, A, 2genus(Σ))
w = if id === :A
Te(λ, ϱ, i, j) *
inv(A, Ta(λ, i)) *
Tα(λ, i) *
Ta(λ, i) *
inv(A, Te(λ, ϱ, i, j)) *
inv(A, Tα(λ, i)) *
inv(A, Ta(λ, j))
elseif id === :B
if !minus
if i j
x = Ta(λ, j) * inv(A, Ta(λ, i)) * Tα(λ, j) * Te(λ, ϱ, i, j)
δ = x * Tα(λ, i) * inv(A, x)
Tα(λ, i) * Tα(λ, j) * inv(A, δ)
else
inv(A, Tα(λ, i))
end
else
if i j
Ta(λ, i) * Ta(λ, j) * inv(A, Te(λ, ϱ, i, j))
else
Ta(λ, i)
end
end
else
throw("Type not recognized: $id")
end
g = sautFn(w)
d = ntuple(i->gens(Σ, i), ngens(Σ))
img = evaluate!(deepcopy(d), g)
invim = evaluate!(d, inv(g))
img, invim = inverse ? (invim, img) : (img, invim)
res = SymplecticMappingClass(id, UInt(i), UInt(j), minus, inverse, img, invim)
return res
end
function Base.show(io::IO, smc::SymplecticMappingClass)
smc.minus && print(io, 'm')
if smc.i < 10 && smc.j < 10
print(io, smc.id, subscriptify(smc.i), subscriptify(smc.j))
else
print(io, smc.id, subscriptify(smc.i), ".", subscriptify(smc.j))
end
smc.inv && print(io, "^-1")
end
function Base.inv(m::SymplecticMappingClass)
return SymplecticMappingClass(m.id, m.i, m.j, m.minus, !m.inv, m.invimages, m.images)
end
function evaluate!(
t::NTuple{N,T},
smc::SymplecticMappingClass,
A::Alphabet,
tmp = one(first(t)),
) where {N,T}
img = smc.inv ? smc.invimages : smc.images
# need a map from generators to letters of the alphabet!
# TODO: move to SymplecticMappingClass
gens_idcs = let G = parent(first(t))
Dict(A[G.gens[i]] => i for i in 1:ngens(G))
end
for elt in t
copyto!(tmp, elt)
resize!(word(elt), 0)
for idx in word(tmp)
# @show idx
k = if haskey(gens_idcs, idx)
img[gens_idcs[idx]]
else
inv(img[gens_idcs[inv(A, idx)]])
end
append!(word(elt), word(k))
end
_setnormalform!(elt, false)
_setvalidhash!(elt, false)
normalform!(tmp, elt)
copyto!(elt, tmp)
end
return t
end