1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 06:30:29 +01:00

base DirectPowerElem on N-tuples

This commit is contained in:
kalmarek 2019-01-02 15:45:46 +01:00
parent 38e327c385
commit e8b90ab54a

View File

@ -98,7 +98,7 @@ end
###############################################################################
#
# DirectPowerGroup / DirectPowerGroupElem
# DirectPowerGroup / DirectPowerGroupElem Constructors
#
###############################################################################
@ -107,57 +107,11 @@ end
Implements `n`-fold direct product of `G`. The group operation is
`*` distributed component-wise, with component-wise identity as neutral element.
"""
struct DirectPowerGroup{T<:Group} <: Group
struct DirectPowerGroup{N, T<:Group} <: Group
group::T
n::Int
end
struct DirectPowerGroupElem{T<:GroupElem} <: GroupElem
elts::Vector{T}
end
###############################################################################
#
# Type and parent object methods
#
###############################################################################
elem_type(::Type{DirectPowerGroup{T}}) where {T} =
DirectPowerGroupElem{elem_type(T)}
parent_type(::Type{DirectPowerGroupElem{T}}) where {T} =
DirectPowerGroup{parent_type(T)}
parent(g::DirectPowerGroupElem) =
DirectPowerGroup(parent(first(g.elts)), length(g.elts))
###############################################################################
#
# AbstractVector interface
#
###############################################################################
size(g::DirectPowerGroupElem) = size(g.elts)
Base.IndexStyle(::Type{DirectPowerGroupElem}) = Base.LinearFast()
Base.getindex(g::DirectPowerGroupElem, i::Int) = g.elts[i]
function Base.setindex!(g::DirectPowerGroupElem{T}, v::T, i::Int) where {T}
parent(v) == parent(g.elts[i]) || throw(DomainError(
"$g is not an element of $i-th factor of $(parent(G))"))
g.elts[i] = v
return g
end
function Base.setindex!(g::DirectPowerGroupElem{T}, v::S, i::Int) where {T, S}
g.elts[i] = parent(g.elts[i])(v)
return g
end
###############################################################################
#
# DirectPowerGroup / DirectPowerGroupElem constructors
#
###############################################################################
DirectPowerGroup(G::Gr, N::Int) where Gr<:Group = DirectPowerGroup{N,Gr}(G)
function DirectPower(G::Group, H::Group)
G == H || throw(DomainError(
@ -167,17 +121,50 @@ end
DirectPower(H::Group, G::DirectPowerGroup) = DirectPower(G,H)
function DirectPower(G::DirectPowerGroup, H::Group)
function DirectPower(G::DirectPowerGroup{N}, H::Group) where N
G.group == H || throw(DomainError(
"Direct products are defined only for the same groups"))
return DirectPowerGroup(G.group,G.n+1)
"Direct Powers are defined only for the same groups"))
return DirectPowerGroup(G.group, N+1)
end
function DirectPower(R::AbstractAlgebra.Ring, n::Int)
@warn "Creating DirectPower of the multilplicative group!"
return DirectPowerGroup(R, n)
return DirectPowerGroup(MultiplicativeGroup(R), n)
end
struct DirectPowerGroupElem{N, T<:GroupElem} <: GroupElem
elts::NTuple{N,T}
end
function DirectPowerGroupElem(v::Vector{GrEl}) where GrEl<:GroupElem
return DirectPowerGroupElem(tuple(v...))
end
###############################################################################
#
# Type and parent object methods
#
###############################################################################
elem_type(::Type{DirectPowerGroup{N,T}}) where {N,T} =
DirectPowerGroupElem{N, elem_type(T)}
parent_type(::Type{DirectPowerGroupElem{N,T}}) where {N,T} =
DirectPowerGroup{N, parent_type(T)}
parent(g::DirectPowerGroupElem{N, T}) where {N,T} =
DirectPowerGroup(parent(first(g.elts)), N)
###############################################################################
#
# AbstractVector interface
#
###############################################################################
size(g::DirectPowerGroupElem{N}) where N = (N,)
Base.IndexStyle(::Type{DirectPowerGroupElem}) = Base.LinearFast()
Base.getindex(g::DirectPowerGroupElem, i::Int) = g.elts[i]
###############################################################################
#
# Parent object call overloads
@ -190,33 +177,39 @@ end
> element of vector `a` to `G.group`. If `check` flag is set to `false` neither
> check on the correctness nor coercion is performed.
"""
function (G::DirectPowerGroup)(a::Vector, check::Bool=true)
function (G::DirectPowerGroup{N})(a::Vector, check::Bool=true) where N
if check
G.n == length(a) || throw(DomainError(
N == length(a) || throw(DomainError(
"Can not coerce to DirectPowerGroup: lengths differ"))
a = (G.group).(a)
end
return DirectPowerGroupElem(a)
end
(G::DirectPowerGroup)() = DirectPowerGroupElem([G.group() for _ in 1:G.n])
function (G::DirectPowerGroup{N})(a::NTuple{N, GrEl}) where {N, GrEl}
return DirectPowerGroupElem(G.group.(a))
end
(G::DirectPowerGroup{N})(a::Vararg{GrEl, N}) where {N, GrEl} = DirectPowerGroupElem(G.group.(a))
function (G::DirectPowerGroup{N})() where N
return DirectPowerGroupElem(ntuple(i->G.group(),N))
end
(G::DirectPowerGroup)(g::DirectPowerGroupElem) = G(g.elts)
(G::DirectPowerGroup)(a::Vararg{T, N}) where {T, N} = G([a...])
###############################################################################
#
# Basic manipulation
#
###############################################################################
function hash(G::DirectPowerGroup, h::UInt)
return hash(G.group, hash(G.n, hash(DirectPowerGroup,h)))
function hash(G::DirectPowerGroup{N}, h::UInt) where N
return hash(G.group, hash(N, hash(DirectPowerGroup,h)))
end
function hash(g::DirectPowerGroupElem, h::UInt)
return hash(g.elts, hash(parent(g), hash(DirectPowerGroupElem, h)))
return hash(g.elts, hash(DirectPowerGroupElem, h))
end
###############################################################################
@ -225,8 +218,8 @@ end
#
###############################################################################
function show(io::IO, G::DirectPowerGroup)
print(io, "$(G.n)-fold direct product of $(G.group)")
function show(io::IO, G::DirectPowerGroup{N}) where N
print(io, "$(N)-fold direct product of $(G.group)")
end
function show(io::IO, g::DirectPowerGroupElem)
@ -243,9 +236,9 @@ end
==(g::DirectPowerGroup, h::DirectPowerGroup)
> Checks if two direct product groups are the same.
"""
function (==)(G::DirectPowerGroup, H::DirectPowerGroup)
function (==)(G::DirectPowerGroup{N}, H::DirectPowerGroup{M}) where {N,M}
N == M || return false
G.group == H.group || return false
G.n == G.n || return false
return true
end
@ -253,10 +246,7 @@ end
==(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
> Checks if two direct product group elements are the same.
"""
function (==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
g.elts == h.elts || return false
return true
end
(==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem) = g.elts == h.elts
###############################################################################
#
@ -269,12 +259,12 @@ end
> Return the direct-product group operation of elements, i.e. component-wise
> operation as defined by `operations` field of the parent object.
"""
function *(g::DirectPowerGroupElem, h::DirectPowerGroupElem, check::Bool=true)
function *(g::DirectPowerGroupElem{N}, h::DirectPowerGroupElem{N}, check::Bool=true) where N
if check
parent(g) == parent(h) || throw(DomainError(
"Can not multiply elements of different groups!"))
end
return DirectPowerGroupElem([a*b for (a,b) in zip(g.elts,h.elts)])
return DirectPowerGroupElem(ntuple(i-> g.elts[i]*h.elts[i], N))
end
^(g::DirectPowerGroupElem, n::Integer) = Base.power_by_squaring(g, n)
@ -283,8 +273,8 @@ end
inv(g::DirectPowerGroupElem)
> Return the inverse of the given element in the direct product group.
"""
function inv(g::DirectPowerGroupElem{T}) where {T<:GroupElem}
return DirectPowerGroupElem([inv(a) for a in g.elts])
function inv(g::DirectPowerGroupElem{N}) where {N}
return DirectPowerGroupElem(ntuple(i-> inv(g.elts[i]), N))
end
###############################################################################