mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-12 22:22:32 +01:00
base DirectPowerElem on N-tuples
This commit is contained in:
parent
38e327c385
commit
e8b90ab54a
@ -98,7 +98,7 @@ end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# DirectPowerGroup / DirectPowerGroupElem
|
||||
# DirectPowerGroup / DirectPowerGroupElem Constructors
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
@ -107,57 +107,11 @@ end
|
||||
Implements `n`-fold direct product of `G`. The group operation is
|
||||
`*` distributed component-wise, with component-wise identity as neutral element.
|
||||
"""
|
||||
struct DirectPowerGroup{T<:Group} <: Group
|
||||
struct DirectPowerGroup{N, T<:Group} <: Group
|
||||
group::T
|
||||
n::Int
|
||||
end
|
||||
|
||||
struct DirectPowerGroupElem{T<:GroupElem} <: GroupElem
|
||||
elts::Vector{T}
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Type and parent object methods
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
elem_type(::Type{DirectPowerGroup{T}}) where {T} =
|
||||
DirectPowerGroupElem{elem_type(T)}
|
||||
|
||||
parent_type(::Type{DirectPowerGroupElem{T}}) where {T} =
|
||||
DirectPowerGroup{parent_type(T)}
|
||||
|
||||
parent(g::DirectPowerGroupElem) =
|
||||
DirectPowerGroup(parent(first(g.elts)), length(g.elts))
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# AbstractVector interface
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
size(g::DirectPowerGroupElem) = size(g.elts)
|
||||
Base.IndexStyle(::Type{DirectPowerGroupElem}) = Base.LinearFast()
|
||||
Base.getindex(g::DirectPowerGroupElem, i::Int) = g.elts[i]
|
||||
|
||||
function Base.setindex!(g::DirectPowerGroupElem{T}, v::T, i::Int) where {T}
|
||||
parent(v) == parent(g.elts[i]) || throw(DomainError(
|
||||
"$g is not an element of $i-th factor of $(parent(G))"))
|
||||
g.elts[i] = v
|
||||
return g
|
||||
end
|
||||
|
||||
function Base.setindex!(g::DirectPowerGroupElem{T}, v::S, i::Int) where {T, S}
|
||||
g.elts[i] = parent(g.elts[i])(v)
|
||||
return g
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# DirectPowerGroup / DirectPowerGroupElem constructors
|
||||
#
|
||||
###############################################################################
|
||||
DirectPowerGroup(G::Gr, N::Int) where Gr<:Group = DirectPowerGroup{N,Gr}(G)
|
||||
|
||||
function DirectPower(G::Group, H::Group)
|
||||
G == H || throw(DomainError(
|
||||
@ -167,17 +121,50 @@ end
|
||||
|
||||
DirectPower(H::Group, G::DirectPowerGroup) = DirectPower(G,H)
|
||||
|
||||
function DirectPower(G::DirectPowerGroup, H::Group)
|
||||
function DirectPower(G::DirectPowerGroup{N}, H::Group) where N
|
||||
G.group == H || throw(DomainError(
|
||||
"Direct products are defined only for the same groups"))
|
||||
return DirectPowerGroup(G.group,G.n+1)
|
||||
"Direct Powers are defined only for the same groups"))
|
||||
return DirectPowerGroup(G.group, N+1)
|
||||
end
|
||||
|
||||
function DirectPower(R::AbstractAlgebra.Ring, n::Int)
|
||||
@warn "Creating DirectPower of the multilplicative group!"
|
||||
return DirectPowerGroup(R, n)
|
||||
return DirectPowerGroup(MultiplicativeGroup(R), n)
|
||||
end
|
||||
|
||||
struct DirectPowerGroupElem{N, T<:GroupElem} <: GroupElem
|
||||
elts::NTuple{N,T}
|
||||
end
|
||||
|
||||
function DirectPowerGroupElem(v::Vector{GrEl}) where GrEl<:GroupElem
|
||||
return DirectPowerGroupElem(tuple(v...))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Type and parent object methods
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
elem_type(::Type{DirectPowerGroup{N,T}}) where {N,T} =
|
||||
DirectPowerGroupElem{N, elem_type(T)}
|
||||
|
||||
parent_type(::Type{DirectPowerGroupElem{N,T}}) where {N,T} =
|
||||
DirectPowerGroup{N, parent_type(T)}
|
||||
|
||||
parent(g::DirectPowerGroupElem{N, T}) where {N,T} =
|
||||
DirectPowerGroup(parent(first(g.elts)), N)
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# AbstractVector interface
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
size(g::DirectPowerGroupElem{N}) where N = (N,)
|
||||
Base.IndexStyle(::Type{DirectPowerGroupElem}) = Base.LinearFast()
|
||||
Base.getindex(g::DirectPowerGroupElem, i::Int) = g.elts[i]
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Parent object call overloads
|
||||
@ -190,33 +177,39 @@ end
|
||||
> element of vector `a` to `G.group`. If `check` flag is set to `false` neither
|
||||
> check on the correctness nor coercion is performed.
|
||||
"""
|
||||
function (G::DirectPowerGroup)(a::Vector, check::Bool=true)
|
||||
function (G::DirectPowerGroup{N})(a::Vector, check::Bool=true) where N
|
||||
if check
|
||||
G.n == length(a) || throw(DomainError(
|
||||
N == length(a) || throw(DomainError(
|
||||
"Can not coerce to DirectPowerGroup: lengths differ"))
|
||||
a = (G.group).(a)
|
||||
end
|
||||
return DirectPowerGroupElem(a)
|
||||
end
|
||||
|
||||
(G::DirectPowerGroup)() = DirectPowerGroupElem([G.group() for _ in 1:G.n])
|
||||
function (G::DirectPowerGroup{N})(a::NTuple{N, GrEl}) where {N, GrEl}
|
||||
return DirectPowerGroupElem(G.group.(a))
|
||||
end
|
||||
|
||||
(G::DirectPowerGroup{N})(a::Vararg{GrEl, N}) where {N, GrEl} = DirectPowerGroupElem(G.group.(a))
|
||||
|
||||
function (G::DirectPowerGroup{N})() where N
|
||||
return DirectPowerGroupElem(ntuple(i->G.group(),N))
|
||||
end
|
||||
|
||||
(G::DirectPowerGroup)(g::DirectPowerGroupElem) = G(g.elts)
|
||||
|
||||
(G::DirectPowerGroup)(a::Vararg{T, N}) where {T, N} = G([a...])
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
# Basic manipulation
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function hash(G::DirectPowerGroup, h::UInt)
|
||||
return hash(G.group, hash(G.n, hash(DirectPowerGroup,h)))
|
||||
function hash(G::DirectPowerGroup{N}, h::UInt) where N
|
||||
return hash(G.group, hash(N, hash(DirectPowerGroup,h)))
|
||||
end
|
||||
|
||||
function hash(g::DirectPowerGroupElem, h::UInt)
|
||||
return hash(g.elts, hash(parent(g), hash(DirectPowerGroupElem, h)))
|
||||
return hash(g.elts, hash(DirectPowerGroupElem, h))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
@ -225,8 +218,8 @@ end
|
||||
#
|
||||
###############################################################################
|
||||
|
||||
function show(io::IO, G::DirectPowerGroup)
|
||||
print(io, "$(G.n)-fold direct product of $(G.group)")
|
||||
function show(io::IO, G::DirectPowerGroup{N}) where N
|
||||
print(io, "$(N)-fold direct product of $(G.group)")
|
||||
end
|
||||
|
||||
function show(io::IO, g::DirectPowerGroupElem)
|
||||
@ -243,9 +236,9 @@ end
|
||||
==(g::DirectPowerGroup, h::DirectPowerGroup)
|
||||
> Checks if two direct product groups are the same.
|
||||
"""
|
||||
function (==)(G::DirectPowerGroup, H::DirectPowerGroup)
|
||||
function (==)(G::DirectPowerGroup{N}, H::DirectPowerGroup{M}) where {N,M}
|
||||
N == M || return false
|
||||
G.group == H.group || return false
|
||||
G.n == G.n || return false
|
||||
return true
|
||||
end
|
||||
|
||||
@ -253,10 +246,7 @@ end
|
||||
==(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
|
||||
> Checks if two direct product group elements are the same.
|
||||
"""
|
||||
function (==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem)
|
||||
g.elts == h.elts || return false
|
||||
return true
|
||||
end
|
||||
(==)(g::DirectPowerGroupElem, h::DirectPowerGroupElem) = g.elts == h.elts
|
||||
|
||||
###############################################################################
|
||||
#
|
||||
@ -269,12 +259,12 @@ end
|
||||
> Return the direct-product group operation of elements, i.e. component-wise
|
||||
> operation as defined by `operations` field of the parent object.
|
||||
"""
|
||||
function *(g::DirectPowerGroupElem, h::DirectPowerGroupElem, check::Bool=true)
|
||||
function *(g::DirectPowerGroupElem{N}, h::DirectPowerGroupElem{N}, check::Bool=true) where N
|
||||
if check
|
||||
parent(g) == parent(h) || throw(DomainError(
|
||||
"Can not multiply elements of different groups!"))
|
||||
end
|
||||
return DirectPowerGroupElem([a*b for (a,b) in zip(g.elts,h.elts)])
|
||||
return DirectPowerGroupElem(ntuple(i-> g.elts[i]*h.elts[i], N))
|
||||
end
|
||||
|
||||
^(g::DirectPowerGroupElem, n::Integer) = Base.power_by_squaring(g, n)
|
||||
@ -283,8 +273,8 @@ end
|
||||
inv(g::DirectPowerGroupElem)
|
||||
> Return the inverse of the given element in the direct product group.
|
||||
"""
|
||||
function inv(g::DirectPowerGroupElem{T}) where {T<:GroupElem}
|
||||
return DirectPowerGroupElem([inv(a) for a in g.elts])
|
||||
function inv(g::DirectPowerGroupElem{N}) where {N}
|
||||
return DirectPowerGroupElem(ntuple(i-> inv(g.elts[i]), N))
|
||||
end
|
||||
|
||||
###############################################################################
|
||||
|
Loading…
Reference in New Issue
Block a user