mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-11 14:02:33 +01:00
Tests for the specific example of Aut(F_4)
This commit is contained in:
parent
7b208584a2
commit
ea9b9402a2
@ -120,4 +120,30 @@ end
|
||||
@test a*b == b*a
|
||||
@test a^3 * b^3 == one(a)
|
||||
end
|
||||
@testset "specific Aut(𝔽₄) tests" begin
|
||||
N = 4
|
||||
import Combinatorics.nthperm
|
||||
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
|
||||
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
|
||||
|
||||
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
|
||||
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
|
||||
ɛs = [flip_AutSymbol(i) for i in 1:N];
|
||||
|
||||
S = vcat(ϱs, λs, σs, ɛs)
|
||||
S = vcat(S, [inv(s) for s in S])
|
||||
@test isa(S, Vector{AutSymbol})
|
||||
@test length(S) == 102
|
||||
@test length(unique(S)) == 75
|
||||
S₁ = [GWord(s) for s in unique(S)]
|
||||
@test isa(S₁, Vector{AutWord})
|
||||
p = prod(S₁)
|
||||
@test length(p) == 75
|
||||
@test Group.simplify_perms!(p) == false
|
||||
@test length(p) == 53
|
||||
@test Group.join_free_symbols!(p) == true
|
||||
|
||||
|
||||
end
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user