1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-11 14:02:33 +01:00

Tests for the specific example of Aut(F_4)

This commit is contained in:
kalmar 2017-01-24 13:09:49 +01:00
parent 7b208584a2
commit ea9b9402a2

View File

@ -120,4 +120,30 @@ end
@test a*b == b*a
@test a^3 * b^3 == one(a)
end
@testset "specific Aut(𝔽₄) tests" begin
N = 4
import Combinatorics.nthperm
SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)]
indexing = [[i,j] for i in 1:N for j in 1:N if i≠j]
σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]];
ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing]
λs = [lmul_AutSymbol(i,j) for (i,j) in indexing]
ɛs = [flip_AutSymbol(i) for i in 1:N];
S = vcat(ϱs, λs, σs, ɛs)
S = vcat(S, [inv(s) for s in S])
@test isa(S, Vector{AutSymbol})
@test length(S) == 102
@test length(unique(S)) == 75
S₁ = [GWord(s) for s in unique(S)]
@test isa(S₁, Vector{AutWord})
p = prod(S₁)
@test length(p) == 75
@test Group.simplify_perms!(p) == false
@test length(p) == 53
@test Group.join_free_symbols!(p) == true
end
end