1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-07 21:15:28 +01:00

update constructions to PG-0.6

This commit is contained in:
Marek Kaluba 2024-02-12 12:37:33 +01:00
parent add9a6f287
commit f4d018f087
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
4 changed files with 104 additions and 74 deletions

View File

@ -14,10 +14,10 @@ Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182" StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
[compat] [compat]
GroupsCore = "0.4" GroupsCore = "0.5"
KnuthBendix = "0.4" KnuthBendix = "0.4"
OrderedCollections = "1" OrderedCollections = "1"
PermutationGroups = "0.4" PermutationGroups = "0.6"
StaticArrays = "1" StaticArrays = "1"
julia = "1.6" julia = "1.6"

View File

@ -59,15 +59,6 @@ end
GroupsCore.ngens(G::DirectPower) = _nfold(G) * ngens(G.group) GroupsCore.ngens(G::DirectPower) = _nfold(G) * ngens(G.group)
function GroupsCore.gens(G::DirectPower, i::Integer)
k = ngens(G.group)
ci = CartesianIndices((k, _nfold(G)))
@boundscheck checkbounds(ci, i)
r, c = Tuple(ci[i])
tup = ntuple(j -> j == c ? gens(G.group, r) : one(G.group), _nfold(G))
return DirectPowerElement(tup, G)
end
function GroupsCore.gens(G::DirectPower) function GroupsCore.gens(G::DirectPower)
N = _nfold(G) N = _nfold(G)
S = gens(G.group) S = gens(G.group)
@ -78,14 +69,6 @@ end
Base.isfinite(G::DirectPower) = isfinite(G.group) Base.isfinite(G::DirectPower) = isfinite(G.group)
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:DirectPower},
)
G = rs[]
return DirectPowerElement(rand(rng, G.group, _nfold(G)), G)
end
GroupsCore.parent(g::DirectPowerElement) = g.parent GroupsCore.parent(g::DirectPowerElement) = g.parent
function Base.:(==)(g::DirectPowerElement, h::DirectPowerElement) function Base.:(==)(g::DirectPowerElement, h::DirectPowerElement)
@ -94,13 +77,6 @@ end
Base.hash(g::DirectPowerElement, h::UInt) = hash(g.elts, hash(parent(g), h)) Base.hash(g::DirectPowerElement, h::UInt) = hash(g.elts, hash(parent(g), h))
function Base.deepcopy_internal(g::DirectPowerElement, stackdict::IdDict)
return DirectPowerElement(
Base.deepcopy_internal(g.elts, stackdict),
parent(g),
)
end
Base.inv(g::DirectPowerElement) = DirectPowerElement(inv.(g.elts), parent(g)) Base.inv(g::DirectPowerElement) = DirectPowerElement(inv.(g.elts), parent(g))
function Base.:(*)(g::DirectPowerElement, h::DirectPowerElement) function Base.:(*)(g::DirectPowerElement, h::DirectPowerElement)
@ -108,6 +84,39 @@ function Base.:(*)(g::DirectPowerElement, h::DirectPowerElement)
return DirectPowerElement(g.elts .* h.elts, parent(g)) return DirectPowerElement(g.elts .* h.elts, parent(g))
end end
# to make sure that parents are never copied i.e.
# g and deepcopy(g) share their parent
Base.deepcopy_internal(G::DirectPower, ::IdDict) = G
################## Implementing Group Interface Done!
function GroupsCore.gens(G::DirectPower, i::Integer)
k = ngens(G.group)
ci = CartesianIndices((k, _nfold(G)))
@boundscheck checkbounds(ci, i)
r, c = Tuple(ci[i])
tup = ntuple(j -> j == c ? gens(G.group, r) : one(G.group), _nfold(G))
return DirectPowerElement(tup, G)
end
# Overloading rand: the PRA of GroupsCore is known for not performing
# well on direct sums
function Random.Sampler(
RNG::Type{<:Random.AbstractRNG},
G::DirectPower,
repetition::Random.Repetition = Val(Inf),
)
return Random.SamplerTrivial(G)
end
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:DirectPower},
)
G = rs[]
return DirectPowerElement(rand(rng, G.group, _nfold(G)), G)
end
function GroupsCore.order(::Type{I}, g::DirectPowerElement) where {I<:Integer} function GroupsCore.order(::Type{I}, g::DirectPowerElement) where {I<:Integer}
return convert(I, reduce(lcm, (order(I, h) for h in g.elts); init = one(I))) return convert(I, reduce(lcm, (order(I, h) for h in g.elts); init = one(I)))
end end
@ -117,10 +126,13 @@ Base.isone(g::DirectPowerElement) = all(isone, g.elts)
function Base.show(io::IO, G::DirectPower) function Base.show(io::IO, G::DirectPower)
n = _nfold(G) n = _nfold(G)
nn = n == 1 ? "1-st" : n == 2 ? "2-nd" : n == 3 ? "3-rd" : "$n-th" nn = n == 1 ? "1-st" : n == 2 ? "2-nd" : n == 3 ? "3-rd" : "$n-th"
return print(io, "Direct $(nn) power of $(G.group)") return print(io, "Direct $(nn) power of ", G.group)
end end
function Base.show(io::IO, g::DirectPowerElement) function Base.show(io::IO, g::DirectPowerElement)
return print(io, "( ", join(g.elts, ", "), " )") print(io, "( ")
join(io, g.elts, ", ")
return print(" )")
end end
# convienience: # convienience:

View File

@ -72,14 +72,6 @@ end
Base.isfinite(G::DirectProduct) = isfinite(G.first) && isfinite(G.last) Base.isfinite(G::DirectProduct) = isfinite(G.first) && isfinite(G.last)
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:DirectProduct},
)
G = rs[]
return DirectProductElement((rand(rng, G.first), rand(rng, G.last)), G)
end
GroupsCore.parent(g::DirectProductElement) = g.parent GroupsCore.parent(g::DirectProductElement) = g.parent
function Base.:(==)(g::DirectProductElement, h::DirectProductElement) function Base.:(==)(g::DirectProductElement, h::DirectProductElement)
@ -88,13 +80,6 @@ end
Base.hash(g::DirectProductElement, h::UInt) = hash(g.elts, hash(parent(g), h)) Base.hash(g::DirectProductElement, h::UInt) = hash(g.elts, hash(parent(g), h))
function Base.deepcopy_internal(g::DirectProductElement, stackdict::IdDict)
return DirectProductElement(
Base.deepcopy_internal(g.elts, stackdict),
parent(g),
)
end
function Base.inv(g::DirectProductElement) function Base.inv(g::DirectProductElement)
return DirectProductElement(inv.(g.elts), parent(g)) return DirectProductElement(inv.(g.elts), parent(g))
end end
@ -104,6 +89,30 @@ function Base.:(*)(g::DirectProductElement, h::DirectProductElement)
return DirectProductElement(g.elts .* h.elts, parent(g)) return DirectProductElement(g.elts .* h.elts, parent(g))
end end
# to make sure that parents are never copied i.e.
# g and deepcopy(g) share their parent
Base.deepcopy_internal(G::DirectProduct, ::IdDict) = G
################## Implementing Group Interface Done!
# Overloading rand: the PRA of GroupsCore is known for not performing
# well on direct sums
function Random.Sampler(
RNG::Type{<:Random.AbstractRNG},
G::DirectProduct,
repetition::Random.Repetition = Val(Inf),
)
return Random.SamplerTrivial(G)
end
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:DirectProduct},
)
G = rs[]
return DirectProductElement((rand(rng, G.first), rand(rng, G.last)), G)
end
function GroupsCore.order(::Type{I}, g::DirectProductElement) where {I<:Integer} function GroupsCore.order(::Type{I}, g::DirectProductElement) where {I<:Integer}
return convert(I, lcm(order(I, first(g.elts)), order(I, last(g.elts)))) return convert(I, lcm(order(I, first(g.elts)), order(I, last(g.elts))))
end end
@ -111,10 +120,13 @@ end
Base.isone(g::DirectProductElement) = all(isone, g.elts) Base.isone(g::DirectProductElement) = all(isone, g.elts)
function Base.show(io::IO, G::DirectProduct) function Base.show(io::IO, G::DirectProduct)
return print(io, "Direct product of $(G.first) and $(G.last)") return print(io, "Direct product of ", G.first, " and ", G.last)
end end
function Base.show(io::IO, g::DirectProductElement) function Base.show(io::IO, g::DirectProductElement)
return print(io, "( $(join(g.elts, ",")) )") print(io, "( ")
join(io, g.elts, ", ")
return print(io, " )")
end end
# convienience: # convienience:

View File

@ -1,7 +1,4 @@
import PermutationGroups: import PermutationGroups as PG
AbstractPermutationGroup,
AbstractPermutation,
degree
""" """
WreathProduct(G::Group, P::AbstractPermutationGroup) <: Group WreathProduct(G::Group, P::AbstractPermutationGroup) <: Group
@ -16,20 +13,20 @@ product is defined as
where `m^σ` denotes the action (from the right) of the permutation `σ` on where `m^σ` denotes the action (from the right) of the permutation `σ` on
`d`-tuples of elements from `G`. `d`-tuples of elements from `G`.
""" """
struct WreathProduct{DP<:DirectPower,PGr<:AbstractPermutationGroup} <: struct WreathProduct{DP<:DirectPower,PGr<:PG.AbstractPermutationGroup} <:
GroupsCore.Group GroupsCore.Group
N::DP N::DP
P::PGr P::PGr
function WreathProduct(G::Group, P::AbstractPermutationGroup) function WreathProduct(G::Group, P::PG.AbstractPermutationGroup)
N = DirectPower{degree(P)}(G) N = DirectPower{PG.AP.degree(P)}(G)
return new{typeof(N),typeof(P)}(N, P) return new{typeof(N),typeof(P)}(N, P)
end end
end end
struct WreathProductElement{ struct WreathProductElement{
DPEl<:DirectPowerElement, DPEl<:DirectPowerElement,
PEl<:AbstractPermutation, PEl<:PG.AP.AbstractPermutation,
Wr<:WreathProduct, Wr<:WreathProduct,
} <: GroupsCore.GroupElement } <: GroupsCore.GroupElement
n::DPEl n::DPEl
@ -38,7 +35,7 @@ struct WreathProductElement{
function WreathProductElement( function WreathProductElement(
n::DirectPowerElement, n::DirectPowerElement,
p::AbstractPermutation, p::PG.AP.AbstractPermutation,
W::WreathProduct, W::WreathProduct,
) )
return new{typeof(n),typeof(p),typeof(W)}(n, p, W) return new{typeof(n),typeof(p),typeof(W)}(n, p, W)
@ -97,14 +94,6 @@ end
Base.isfinite(G::WreathProduct) = isfinite(G.N) && isfinite(G.P) Base.isfinite(G::WreathProduct) = isfinite(G.N) && isfinite(G.P)
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:WreathProduct},
)
G = rs[]
return WreathProductElement(rand(rng, G.N), rand(rng, G.P), G)
end
GroupsCore.parent(g::WreathProductElement) = g.parent GroupsCore.parent(g::WreathProductElement) = g.parent
function Base.:(==)(g::WreathProductElement, h::WreathProductElement) function Base.:(==)(g::WreathProductElement, h::WreathProductElement)
@ -115,15 +104,7 @@ function Base.hash(g::WreathProductElement, h::UInt)
return hash(g.n, hash(g.p, hash(g.parent, h))) return hash(g.n, hash(g.p, hash(g.parent, h)))
end end
function Base.deepcopy_internal(g::WreathProductElement, stackdict::IdDict) function _act(p::PG.AP.AbstractPermutation, n::DirectPowerElement)
return WreathProductElement(
Base.deepcopy_internal(g.n, stackdict),
Base.deepcopy_internal(g.p, stackdict),
parent(g),
)
end
function _act(p::AbstractPermutation, n::DirectPowerElement)
return DirectPowerElement( return DirectPowerElement(
ntuple(i -> n.elts[i^p], length(n.elts)), ntuple(i -> n.elts[i^p], length(n.elts)),
parent(n), parent(n),
@ -140,11 +121,36 @@ function Base.:(*)(g::WreathProductElement, h::WreathProductElement)
return WreathProductElement(g.n * _act(g.p, h.n), g.p * h.p, parent(g)) return WreathProductElement(g.n * _act(g.p, h.n), g.p * h.p, parent(g))
end end
# to make sure that parents are never copied i.e.
# g and deepcopy(g) share their parent
Base.deepcopy_internal(G::WreathProduct, ::IdDict) = G
################## Implementing Group Interface Done!
# Overloading rand: the PRA of GroupsCore is known for not performing
# well on direct sums
function Random.Sampler(
RNG::Type{<:Random.AbstractRNG},
G::WreathProduct,
repetition::Random.Repetition = Val(Inf),
)
return Random.SamplerTrivial(G)
end
function Base.rand(
rng::Random.AbstractRNG,
rs::Random.SamplerTrivial{<:WreathProduct},
)
G = rs[]
return WreathProductElement(rand(rng, G.N), rand(rng, G.P), G)
end
Base.isone(g::WreathProductElement) = isone(g.n) && isone(g.p) Base.isone(g::WreathProductElement) = isone(g.n) && isone(g.p)
function Base.show(io::IO, G::WreathProduct) function Base.show(io::IO, G::WreathProduct)
return print(io, "Wreath product of $(G.N.group) by $(G.P)") return print(io, "Wreath product of ", G.N.group, " by ", G.P)
end end
Base.show(io::IO, g::WreathProductElement) = print(io, "( $(g.n)$(g.p) )")
Base.copy(g::WreathProductElement) = WreathProductElement(g.n, g.p, parent(g)) function Base.show(io::IO, g::WreathProductElement)
return print(io, "( ", g.n, "", g.p, " )")
end