1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2024-11-19 06:30:29 +01:00

add tests for SpNs

This commit is contained in:
Marek Kaluba 2022-04-02 16:19:08 +02:00
parent de600de0a2
commit f68a0c2f27
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
4 changed files with 87 additions and 4 deletions

View File

@ -21,3 +21,49 @@ function _abelianize(
end
end
function _abelianize(
i::Integer,
source::AutomorphismGroup{<:Groups.SurfaceGroup},
target::MatrixGroups.SpecialLinearGroup{N, T}) where {N, T}
n = ngens(Groups.object(source))
@assert n == N
g = alphabet(source)[i].autFn_word
result = one(target)
for l in word(g)
append!(word(result), _abelianize(l, parent(g), target))
end
return word(result)
end
function Groups._abelianize(
i::Integer,
source::AutomorphismGroup{<:Groups.SurfaceGroup},
target::MatrixGroups.SymplecticGroup{N, T}
) where {N, T}
@assert iseven(N)
As = alphabet(source)
At = alphabet(target)
SlN = let genus = Groups.genus(Groups.object(source))
@assert 2genus == N
MatrixGroups.SpecialLinearGroup{2genus}(T)
end
ab = Groups.Homomorphism(Groups._abelianize, source, SlN, check=false)
matrix_spn_map = let S = gens(target)
Dict(MatrixGroups.matrix_repr(g)=> word(g) for g in union(S, inv.(S)))
end
# renumeration:
# (f1, f2, f3, f4, f5, f6) = (a₁, a₂, a₃, b₁, b₂, b₃) →
# → (b₃, a₃, b₂, a₂, b₁, a₁)
# hence p = [6, 4, 2, 5, 3, 1]
p = [reverse(2:2:N); reverse(1:2:N)]
g = source([i])
Mg = MatrixGroups.matrix_repr(ab(g))[p,p]
return matrix_spn_map[Mg]
end

View File

@ -28,19 +28,22 @@ function Base.show(
::MIME"text/plain",
sp::Groups.AbstractFPGroupElement{<:SymplecticGroup{N}}
) where {N}
normalform!(sp)
print(io, "$N×$N Symplectic matrix: ")
KnuthBendix.print_repr(io, word(sp), alphabet(sp))
println(io)
Base.print_array(io, matrix_repr(sp))
end
_offdiag_idcs(n) = ((i,j) for i in 1:n for j in 1:n if i j)
function symplectic_gens(N, T=Int8)
iseven(N) || throw(ArgumentError("N needs to be even!"))
n = N÷2
a_ijs = [ElementarySymplectic{N}(:A, i,j, one(T)) for (i,j) in offdiagonal_indexing(n)]
a_ijs = [ElementarySymplectic{N}(:A, i,j, one(T)) for (i,j) in _offdiag_idcs(n)]
b_is = [ElementarySymplectic{N}(:B, n+i,i, one(T)) for i in 1:n]
c_ijs = [ElementarySymplectic{N}(:B, n+i,j, one(T)) for (i,j) in offdiagonal_indexing(n)]
c_ijs = [ElementarySymplectic{N}(:B, n+i,j, one(T)) for (i,j) in _offdiag_idcs(n)]
S = [a_ijs; b_is; c_ijs]

View File

@ -2,8 +2,12 @@ function test_homomorphism(hom)
F = hom.source
@test isone(hom(one(F)))
@test all(inv(hom(g)) == hom(inv(g)) for g in gens(F))
@test all(isone(hom(g)*hom(inv(g))) for g in gens(F))
@test all(hom(g*h) == hom(g)*hom(h) for g in gens(F) for h in gens(F))
@test all(isone(hom(g) * hom(inv(g))) for g in gens(F))
@test all(hom(g * h) == hom(g) * hom(h) for g in gens(F) for h in gens(F))
@test all(
hom(inv(g * h)) == inv(hom(g * h)) == hom(inv(h)) * hom(inv(g)) for
g in gens(F) for h in gens(F)
)
end
@testset "Homomorphisms" begin
@ -46,4 +50,22 @@ end
test_homomorphism(hom)
end
@testset "Correctness of autπ₁Σ → SpN" begin
GENUS = 3
π₁Σ = Groups.SurfaceGroup(GENUS, 0)
autπ₁Σ = AutomorphismGroup(π₁Σ)
SpN = MatrixGroups.SymplecticGroup{2GENUS}(Int8)
hom = Groups.Homomorphism(
Groups._abelianize,
autπ₁Σ,
SpN,
check = false,
)
test_homomorphism(hom)
end
end

View File

@ -33,4 +33,16 @@ using Groups.MatrixGroups
end
end
end
@testset "Sp(6, )" begin
Sp6 = MatrixGroups.SymplecticGroup{6}(Int8)
@testset "GroupsCore conformance" begin
test_Group_interface(Sp6)
g = Sp6(rand(1:length(alphabet(Sp6)), 10))
h = Sp6(rand(1:length(alphabet(Sp6)), 10))
test_GroupElement_interface(g, h)
end
end
end