mirror of
https://github.com/kalmarek/Groups.jl.git
synced 2025-01-12 06:12:33 +01:00
add tests for SpNs
This commit is contained in:
parent
de600de0a2
commit
f68a0c2f27
@ -21,3 +21,49 @@ function _abelianize(
|
||||
end
|
||||
end
|
||||
|
||||
function _abelianize(
|
||||
i::Integer,
|
||||
source::AutomorphismGroup{<:Groups.SurfaceGroup},
|
||||
target::MatrixGroups.SpecialLinearGroup{N, T}) where {N, T}
|
||||
n = ngens(Groups.object(source))
|
||||
@assert n == N
|
||||
g = alphabet(source)[i].autFn_word
|
||||
result = one(target)
|
||||
for l in word(g)
|
||||
append!(word(result), _abelianize(l, parent(g), target))
|
||||
end
|
||||
|
||||
return word(result)
|
||||
end
|
||||
|
||||
function Groups._abelianize(
|
||||
i::Integer,
|
||||
source::AutomorphismGroup{<:Groups.SurfaceGroup},
|
||||
target::MatrixGroups.SymplecticGroup{N, T}
|
||||
) where {N, T}
|
||||
@assert iseven(N)
|
||||
As = alphabet(source)
|
||||
At = alphabet(target)
|
||||
|
||||
SlN = let genus = Groups.genus(Groups.object(source))
|
||||
@assert 2genus == N
|
||||
MatrixGroups.SpecialLinearGroup{2genus}(T)
|
||||
end
|
||||
|
||||
ab = Groups.Homomorphism(Groups._abelianize, source, SlN, check=false)
|
||||
|
||||
matrix_spn_map = let S = gens(target)
|
||||
Dict(MatrixGroups.matrix_repr(g)=> word(g) for g in union(S, inv.(S)))
|
||||
end
|
||||
|
||||
# renumeration:
|
||||
# (f1, f2, f3, f4, f5, f6) = (a₁, a₂, a₃, b₁, b₂, b₃) →
|
||||
# → (b₃, a₃, b₂, a₂, b₁, a₁)
|
||||
# hence p = [6, 4, 2, 5, 3, 1]
|
||||
p = [reverse(2:2:N); reverse(1:2:N)]
|
||||
|
||||
g = source([i])
|
||||
Mg = MatrixGroups.matrix_repr(ab(g))[p,p]
|
||||
|
||||
return matrix_spn_map[Mg]
|
||||
end
|
||||
|
@ -28,19 +28,22 @@ function Base.show(
|
||||
::MIME"text/plain",
|
||||
sp::Groups.AbstractFPGroupElement{<:SymplecticGroup{N}}
|
||||
) where {N}
|
||||
normalform!(sp)
|
||||
print(io, "$N×$N Symplectic matrix: ")
|
||||
KnuthBendix.print_repr(io, word(sp), alphabet(sp))
|
||||
println(io)
|
||||
Base.print_array(io, matrix_repr(sp))
|
||||
end
|
||||
|
||||
_offdiag_idcs(n) = ((i,j) for i in 1:n for j in 1:n if i ≠ j)
|
||||
|
||||
function symplectic_gens(N, T=Int8)
|
||||
iseven(N) || throw(ArgumentError("N needs to be even!"))
|
||||
n = N÷2
|
||||
|
||||
a_ijs = [ElementarySymplectic{N}(:A, i,j, one(T)) for (i,j) in offdiagonal_indexing(n)]
|
||||
a_ijs = [ElementarySymplectic{N}(:A, i,j, one(T)) for (i,j) in _offdiag_idcs(n)]
|
||||
b_is = [ElementarySymplectic{N}(:B, n+i,i, one(T)) for i in 1:n]
|
||||
c_ijs = [ElementarySymplectic{N}(:B, n+i,j, one(T)) for (i,j) in offdiagonal_indexing(n)]
|
||||
c_ijs = [ElementarySymplectic{N}(:B, n+i,j, one(T)) for (i,j) in _offdiag_idcs(n)]
|
||||
|
||||
S = [a_ijs; b_is; c_ijs]
|
||||
|
||||
|
@ -4,6 +4,10 @@ function test_homomorphism(hom)
|
||||
@test all(inv(hom(g)) == hom(inv(g)) for g in gens(F))
|
||||
@test all(isone(hom(g) * hom(inv(g))) for g in gens(F))
|
||||
@test all(hom(g * h) == hom(g) * hom(h) for g in gens(F) for h in gens(F))
|
||||
@test all(
|
||||
hom(inv(g * h)) == inv(hom(g * h)) == hom(inv(h)) * hom(inv(g)) for
|
||||
g in gens(F) for h in gens(F)
|
||||
)
|
||||
end
|
||||
|
||||
@testset "Homomorphisms" begin
|
||||
@ -46,4 +50,22 @@ end
|
||||
|
||||
test_homomorphism(hom)
|
||||
end
|
||||
|
||||
@testset "Correctness of autπ₁Σ → SpN" begin
|
||||
|
||||
GENUS = 3
|
||||
π₁Σ = Groups.SurfaceGroup(GENUS, 0)
|
||||
autπ₁Σ = AutomorphismGroup(π₁Σ)
|
||||
|
||||
SpN = MatrixGroups.SymplecticGroup{2GENUS}(Int8)
|
||||
|
||||
hom = Groups.Homomorphism(
|
||||
Groups._abelianize,
|
||||
autπ₁Σ,
|
||||
SpN,
|
||||
check = false,
|
||||
)
|
||||
|
||||
test_homomorphism(hom)
|
||||
end
|
||||
end
|
||||
|
@ -33,4 +33,16 @@ using Groups.MatrixGroups
|
||||
end
|
||||
end
|
||||
end
|
||||
|
||||
@testset "Sp(6, ℤ)" begin
|
||||
Sp6 = MatrixGroups.SymplecticGroup{6}(Int8)
|
||||
|
||||
@testset "GroupsCore conformance" begin
|
||||
test_Group_interface(Sp6)
|
||||
g = Sp6(rand(1:length(alphabet(Sp6)), 10))
|
||||
h = Sp6(rand(1:length(alphabet(Sp6)), 10))
|
||||
|
||||
test_GroupElement_interface(g, h)
|
||||
end
|
||||
end
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user