1
0
mirror of https://github.com/kalmarek/Groups.jl.git synced 2025-01-12 22:22:32 +01:00

make multiplication abstract

This commit is contained in:
kalmarek 2020-03-25 03:36:36 +01:00
parent a3db467bd1
commit f7bf1598ee
No known key found for this signature in database
GPG Key ID: 8BF1A3855328FC15
2 changed files with 27 additions and 12 deletions

View File

@ -122,10 +122,6 @@ end
#
###############################################################################
(*)(W::FPGroupElem, Z::FPGroupElem) = r_multiply(W, Z.symbols)
(*)(W::FPGroupElem, s::FPSymbol) = r_multiply(W, [s])
(*)(s::FPSymbol, W::FPGroupElem) = l_multiply(W, [s])
function reduce!(W::FPGroupElem)
reduced = false
while !reduced

View File

@ -270,14 +270,32 @@ for (mul, f) in ((:rmul!, :push!), (:lmul!, :pushfirst!))
end
end
end
function rmul!(out::T, x::T, y::T) where T<: GWord
if out === x
out = deepcopy(out)
return freereduce!(append!(out, y))
elseif out === y
out = deepcopy(out)
return freereduce!(prepend!(out, x))
else
slenx = syllablelength(x)
sleny = syllablelength(y)
resize!(syllables(out), slenx+sleny)
syllables(out)[1:slenx] .= syllables(x)
syllables(out)[slenx+1:slenx+sleny] .= syllables(y)
return freereduce!(out)
end
end
lmul!(out::T, x::T, y::T) where T <: GWord = rmul!(out, y, x)
(*)(W::GWord, Z::GWord) = r_multiply(W, Z.symbols)
(*)(W::GWord, s::GSymbol) = r_multiply(W, [s])
(*)(s::GSymbol, W::GWord) = l_multiply(W, [s])
function AbstractAlgebra.mul!(out::T, x::T, y::T) where T <: GWord
return rmul!(out, x, y)
end
(*)(W::GW, Z::GW) where GW <: GWord = rmul!(deepcopy(W), W, Z)
(*)(W::GWord, s::GSymbol) = rmul!(deepcopy(W), W, s)
(*)(s::GSymbol, W::GWord) = lmul!(deepcopy(W), W, s)
function power_by_squaring(W::GWord, p::Integer)
if p < 0
@ -293,18 +311,19 @@ function power_by_squaring(W::GWord, p::Integer)
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) > 0
r_multiply!(W, W.symbols)
append!(W, W)
end
Z = deepcopy(W)
while p > 0
t = trailing_zeros(p) + 1
p >>= t
while (t -= 1) >= 0
r_multiply!(W, W.symbols)
append!(W, W)
end
r_multiply!(Z, W.symbols)
append!(Z, W)
end
return Z
return freereduce!(Z)
end
(^)(x::GWord, n::Integer) = power_by_squaring(x,n)