using PermutationGroups using Groups.KnuthBendix @testset "Wajnryb presentation for Σ₄₁" begin genus = 4 Fn = FreeGroup(2genus) G = SpecialAutomorphismGroup(Fn) T = Groups.mcg_twists(G) # symplectic pairing in the free Group goes like this: # f1 ↔ f5 # f2 ↔ f6 # f3 ↔ f7 # f4 ↔ f8 T = let G = G (Tas, Tαs, Tes) = Groups.mcg_twists(G) Ta = G.(Tas) Tα = G.(Tαs) Tes = G.(Tes) [Ta; Tα; Tes] end a1 = T[1]^-1 # Ta₁ a2 = T[5]^-1 # Tα₁ a3 = T[9]^-1 # Te₁₂ a4 = T[6]^-1 # Tα₂ a5 = T[12]^-1 # Te₂₃ a6 = T[7]^-1 # Tα₃ a7 = T[14]^-1 # Te₃₄ a8 = T[8]^-1 # Tα₄ b0 = T[2]^-1 # Ta₂ a0 = (a1 * a2 * a3)^4 * b0^-1 # from the 3-chain relation X = a4 * a5 * a3 * a4 # auxillary, not present in the Primer b1 = X^-1 * a0 * X b2 = T[10]^-1 # Te₁₃ As = T[[1, 5, 9, 6, 12, 7, 14, 8]] # the inverses of the elements a @testset "preserving relator" begin F = Groups.object(G) R = prod(commutator(gens(F,2i+1), gens(F,2i+2)) for i in 0:genus-1) for g in T @test g(R) == R end end @testset "commutation relations" begin for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for commutativity. Also, a0 is as defined before. for (j, aj) in enumerate(As) if abs(i - j) > 1 @test ai * aj == aj * ai elseif i ≠ j @test ai * aj != aj * ai end end if i != 4 @test a0 * ai == ai * a0 end end end @testset "braid relations" begin for (i, ai) in enumerate(As) #the element ai here is actually the inverse of ai before. It does not matter for braid relations. for (j, aj) in enumerate(As) if abs(i - j) == 1 @test ai * aj * ai == aj * ai * aj end end end @test a0 * a4 * a0 == a4 * a0 * a4 # here, a0 and a4 are as before end @testset "3-chain relation" begin x = a4*a3*a2*a1*a1*a2*a3*a4 # auxillary; does not have a name in the Primer @test b0 == x*a0*x^-1 end @testset "Lantern relation" begin @testset "b2 definition" begin @test b2 == (a2 * a3 * a1 * a2)^-1 * b1 * (a2 * a3 * a1 * a2) # some additional tests, checking what explicitly happens to the generators of the π₁ under b2 d = Groups.domain(b2) img = evaluate(b2) z = img[3] * d[3]^-1 @test img[1] == d[1] @test img[2] == d[2] @test img[3] == z * d[3] @test img[4] == z * d[4] * z^-1 @test img[5] == z * d[5] * z^-1 @test img[6] == z * d[6] * z^-1 @test img[7] == d[7] * z^-1 @test img[8] == d[8] end @testset "b2: commutation relations" begin @test b2 * a1 == a1 * b2 @test b2 * a2 != a2 * b2 @test b2 * a3 == a3 * b2 @test b2 * a4 == a4 * b2 @test b2 * a5 == a5 * b2 @test b2 * a6 != a6 * b2 end @testset "b2: braid relations" begin @test a2 * b2 * a2 == b2 * a2 * b2 @test a6 * b2 * a6 == b2 * a6 * b2 end @testset "lantern" begin u = (a6 * a5)^-1 * b1 * (a6 * a5) x = (a6 * a5 * a4 * a3 * a2 * u * a1^-1 * a2^-1 * a3^-1 * a4^-1) # yet another auxillary # x = (a4^-1*a3^-1*a2^-1*a1^-1*u*a2*a3*a4*a5*a6) b3 = x * a0 * x^-1 b3im = evaluate(b3) b3cim = let g = b3 f = Groups.compiled(g) f(Groups.domain(g)) end @test b3im == b3cim @test a0 * b2 * b1 == a1 * a3 * a5 * b3 @time evaluate(x) let g = b3 f = Groups.compiled(g) f(Groups.domain(g)) @time f(Groups.domain(g)) end end end Base.conj(t::Groups.Transvection, p::Perm) = Groups.Transvection(t.id, t.i^p, t.j^p, t.inv) function Base.conj(elt::FPGroupElement, p::Perm) G = parent(elt) A = alphabet(elt) return G([A[conj(A[idx], p)] for idx in word(elt)]) end @testset "Te₂₃ definition" begin Te₁₂, Te₂₃ = T[9], T[12] G = parent(Te₁₂) F₈ = Groups.object(G) (δ, d, γ, c, β, b, α, a) = Groups.gens(F₈) Groups.domain(Te₁₂) img_Te₂₃ = evaluate(Te₂₃) y = c * β^-1 * b^-1 * β @test img_Te₂₃ == (δ, d, y * γ, y * c * y^-1, β * y^-1, b, α, a) σ = perm"(7,5,3)(8,6,4)" Te₂₃_σ = conj(Te₁₂, σ) # @test word(Te₂₃_σ) == word(Te₂₃) @test evaluate(Te₂₃_σ) == evaluate(Te₂₃) @test Te₂₃ == Te₂₃_σ end @testset "Te₃₄ definition" begin Te₁₂, Te₃₄ = T[9], T[14] G = parent(Te₁₂) F₈ = Groups.object(G) (δ, d, γ, c, β, b, α, a) = Groups.gens(F₈) σ = perm"(7,3)(8,4)(5,1)(6,2)" Te₃₄_σ = conj(Te₁₂, σ) @test Te₃₄ == Te₃₄_σ end @testset "hyperelliptic τ is central" begin τ = Groups.rotation_element(G) τᵍ = τ^genus symplectic_gens = let genus = genus, G = G π₁Σ = Groups.SurfaceGroup(genus, 0) s_twists = Groups.symplectic_twists(π₁Σ) G.(word(t.autFn_word) for t in s_twists) end @test all(sg * τᵍ == τᵍ * sg for sg in symplectic_gens) end end