using Permutations import Base: convert export AutSymbol, AutWord, rmul_AutSymbol, lmul_AutSymbol, flip_AutSymbol, symmetric_AutSymbol immutable AutSymbol <: GSymbol gen::String pow::Int ex::Expr end (==)(s::AutSymbol, t::AutSymbol) = s.gen == t.gen && s.pow == t.pow hash(s::AutSymbol, h::UInt) = hash(s.gen, hash(s.pow, hash(:AutSymbol, h))) IdSymbol(::Type{AutSymbol}) = AutSymbol("(id)", 0, :(IdAutomorphism(N))) function change_pow(s::AutSymbol, n::Int) if n == 0 return one(s) end symbol = s.ex.args[1] if symbol == :ɛ return flip_AutSymbol(s.ex.args[2], pow=n) elseif symbol == :σ return symmetric_AutSymbol(s.ex.args[2], pow=n) elseif symbol == :ϱ return rmul_AutSymbol(s.ex.args[2], s.ex.args[3], pow=n) elseif symbol == :λ return lmul_AutSymbol(s.ex.args[2], s.ex.args[3], pow=n) elseif symbol == :IdAutomorphism return s else warn("Changing an unknown type of symbol! $s") return AutSymbol(s.gen, n, s.ex) end end inv(f::AutSymbol) = change_pow(f, -f.pow) function rmul_AutSymbol(i,j; pow::Int=1) gen = string('ϱ',Char(8320+i), Char(8320+j)...) return AutSymbol(gen, pow, :(ϱ($i,$j))) end function lmul_AutSymbol(i,j; pow::Int=1) gen = string('λ',Char(8320+i), Char(8320+j)...) return AutSymbol(gen, pow, :(λ($i,$j))) end function flip_AutSymbol(j; pow::Int=1) gen = string('ɛ', Char(8320 + j)) return AutSymbol(gen, (2+ pow%2)%2, :(ɛ($j))) end function symmetric_AutSymbol(perm::Vector{Int}; pow::Int=1) perm = Permutation(perm) ord = order(perm) pow = pow % ord perm = perm^pow if array(perm) == collect(1:length(perm)) return one(AutSymbol) else gen = string('σ', [Char(8320 + i) for i in array(perm)]...) return AutSymbol(gen, 1, :(σ($(array(perm))))) end end function getperm(s::AutSymbol) if s.ex.args[1] == :σ return s.ex.args[2] else throw(ArgumentError("$s is not a permutation automorphism!")) end end typealias AutWord GWord{AutSymbol} convert(::Type{AutWord}, s::AutSymbol) = GWord(s) function simplify_perms!(W::AutWord) reduced = true for i in 1:length(W.symbols) - 1 current = W.symbols[i] if current.ex.args[1] == :σ if current.pow != 1 current = symmetric_AutSymbol(perm(current), pow=current.pow) end next_s = W.symbols[i+1] if next_s.ex.args[1] == :σ reduced = false if next_s.pow != 1 next_s = symmetric_AutSymbol(perm(next_s), pow=next_s.pow) end p1 = Permutation(getperm(current)) p2 = Permutation(getperm(next_s)) W.symbols[i] = one(AutSymbol) W.symbols[i+1] = symmetric_AutSymbol(array(p1*p2)) end end end deleteat!(W.symbols, find(x -> x.pow == 0, W.symbols)) return reduced end