using Groups using Base.Test # write your own tests here @testset "Groups" begin @testset "FPSymbols" begin s = FPSymbol("s") t = FPSymbol("t") @testset "defines" begin @test isa(FPSymbol(string(Char(rand(50:2000)))), GSymbol) @test FPSymbol("abc").pow == 1 @test isa(s, FPSymbol) @test isa(t, FPSymbol) end @testset "eltary functions" begin @test length(s) == 1 @test Groups.change_pow(s, 0) == Groups.change_pow(t, 0) @test length(Groups.change_pow(s, 0)) == 0 @test inv(s).pow == -1 @test FPSymbol("s", 3) == Groups.change_pow(s, 3) @test FPSymbol("s", 3) != FPSymbol("t", 3) @test Groups.change_pow(inv(s), -3) == inv(Groups.change_pow(s, 3)) end @testset "powers" begin s⁴ = Groups.change_pow(s,4) @test s⁴.pow == 4 @test Groups.change_pow(s, 4) == FPSymbol("s", 4) end end @testset "FPGroupElems" begin s = FPSymbol("s") t = FPSymbol("t", -2) @testset "defines" begin @test isa(Groups.GWord(s), Groups.GWord) @test isa(Groups.GWord(s), FPGroupElem) @test isa(FPGroupElem(s), Groups.GWord) @test isa(convert(FPGroupElem, s), GWord) @test isa(convert(FPGroupElem, s), FPGroupElem) @test isa(Vector{FPGroupElem}([s,t]), Vector{FPGroupElem}) @test length(FPGroupElem(s)) == 1 @test length(FPGroupElem(t)) == 2 end @testset "eltary functions" begin @test_skip (s*s).symbols == (s^2).symbols @test_skip Vector{GWord{FPSymbol}}([s,t]) == Vector{FPGroupElem}([s,t]) @test_skip Vector{GWord}([s,t]) == [GWord(s), GWord(t)] @test_skip hash([t^1,s^1]) == hash([t^2*inv(t),s*inv(s)*s]) end end @testset "FPGroup" begin @test isa(FPGroup(["s", "t"]), Nemo.Group) G = FPGroup(["s", "t"]) @testset "elements constructors" begin @test isa(G(), FPGroupElem) @test eltype(G.gens) == FPSymbol @test length(G.gens) == 2 @test eltype(G.rels) == FPGroupElem @test length(G.rels) == 0 @test eltype(generators(G)) == FPGroupElem @test length(generators(G)) == 2 end s, t = generators(G) @testset "internal arithmetic" begin t_symb = FPSymbol("t") tt = deepcopy(t) @test string(Groups.r_multiply!(tt,[inv(t_symb)]; reduced=true)) == "(id)" tt = deepcopy(t) @test string(Groups.r_multiply!(tt,[inv(t_symb)]; reduced=false)) == "t*t^-1" tt = deepcopy(t) @test string(Groups.l_multiply!(tt,[inv(t_symb)]; reduced=true)) == "(id)" tt = deepcopy(t) @test string(Groups.l_multiply!(tt,[inv(t_symb)]; reduced=false)) == "t^-1*t" end @testset "reductions" begin @test length(G().symbols) == 1 @test length((G()*G()).symbols) == 0 @test G() == G()*G() w = deepcopy(s) push!(w.symbols, (s^-1).symbols[1]) @test Groups.reduce!(w) == parent(w)() o = (t*s)^3 @test o == t*s*t*s*t*s p = (t*s)^-3 @test p == s^-1*t^-1*s^-1*t^-1*s^-1*t^-1 @test o*p == parent(o*p)() w = FPGroupElem([o.symbols..., p.symbols...]) w.parent = G @test Groups.reduce!(w).symbols ==Vector{FPSymbol}([]) end @testset "binary/inv operations" begin @test parent(s) == G @test parent(s) === parent(deepcopy(s)) @test isa(s*t, FPGroupElem) @test parent(s*t) == parent(s^2) @test s*s == s^2 @test inv(s*s) == inv(s^2) @test inv(s)^2 == inv(s^2) @test inv(s)*inv(s) == inv(s^2) @test inv(s*t) == inv(t)*inv(s) w = s*t*s^-1 @test inv(w) == s*t^-1*s^-1 @test (t*s*t^-1)^10 == t*s^10*t^-1 @test (t*s*t^-1)^-10 == t*s^-10*t^-1 end @testset "replacements" begin a = FPSymbol("a") b = FPSymbol("b") @test Groups.is_subsymbol(a, Groups.change_pow(a,2)) == true @test Groups.is_subsymbol(a, Groups.change_pow(a,-2)) == false @test Groups.is_subsymbol(b, Groups.change_pow(a,-2)) == false @test Groups.is_subsymbol(inv(b), Groups.change_pow(b,-2)) == true c = s*t*s^-1*t^-1 @test findfirst(c, s^-1*t^-1) == 3 @test findnext(c*s^-1, s^-1*t^-1,3) == 3 @test findnext(c*s^-1*t^-1, s^-1*t^-1,4) == 5 @test findfirst(c*t, c) == 0 w = s*t*s^-1 subst = Dict{FPGroupElem, FPGroupElem}(w => s^1, s*t^-1 => t^4) @test Groups.replace(c, 1, s*t, G()) == s^-1*t^-1 @test Groups.replace(c, 1, w, subst[w]) == s*t^-1 @test Groups.replace(s*c*t^-1, 1, w, subst[w]) == s^2*t^-2 @test Groups.replace(t*c*t, 2, w, subst[w]) == t*s @test Groups.replace_all!(s*c*s*c*s, subst) == s*t^4*s*t^4*s end end @testset "Automorphisms" begin @testset "AutSymbol" begin @test_throws MethodError AutSymbol("a") @test_throws MethodError AutSymbol("a", 1) f = AutSymbol("a", 1, :(a()), v -> v) @test isa(f, GSymbol) @test isa(f, AutSymbol) @test isa(symmetric_AutSymbol([1,2,3,4]), AutSymbol) @test isa(rmul_AutSymbol(1,2), AutSymbol) @test isa(lmul_AutSymbol(3,4), AutSymbol) @test isa(flip_AutSymbol(3), AutSymbol) end @testset "flip_AutSymbol correctness" begin a,b,c,d = [FPGroupElem(FPSymbol(i)) for i in ["a", "b", "c", "d"]] domain = [a,b,c,d] @test flip_AutSymbol(1)(domain) == [a^-1, b,c,d] @test flip_AutSymbol(2)(domain) == [a, b^-1,c,d] @test flip_AutSymbol(3)(domain) == [a, b,c^-1,d] @test flip_AutSymbol(4)(domain) == [a, b,c,d^-1] @test inv(flip_AutSymbol(1))(domain) == [a^-1, b,c,d] @test inv(flip_AutSymbol(2))(domain) == [a, b^-1,c,d] @test inv(flip_AutSymbol(3))(domain) == [a, b,c^-1,d] @test inv(flip_AutSymbol(4))(domain) == [a, b,c,d^-1] end @testset "symmetric_AutSymbol correctness" begin a,b,c,d = [FPGroupElem(FPSymbol(i)) for i in ["a", "b", "c", "d"]] domain = [a,b,c,d] σ = symmetric_AutSymbol([1,2,3,4]) @test σ(domain) == domain @test inv(σ)(domain) == domain σ = symmetric_AutSymbol([2,3,4,1]) @test σ(domain) == [b, c, d, a] @test inv(σ)(domain) == [d, a, b, c] σ = symmetric_AutSymbol([2,1,4,3]) @test σ(domain) == [b, a, d, c] @test inv(σ)(domain) == [b, a, d, c] σ = symmetric_AutSymbol([2,3,1,4]) @test σ(domain) == [b,c,a,d] @test inv(σ)(domain) == [c,a,b,d] end @testset "mul_AutSymbol correctness" begin a,b,c,d = [FPGroupElem(FPSymbol(i)) for i in ["a", "b", "c", "d"]] domain = [a,b,c,d] i,j = 1,2 r = rmul_AutSymbol(i,j) l = lmul_AutSymbol(i,j) @test r(domain) == [a*b,b,c,d] @test inv(r)(domain) == [a*b^-1,b,c,d] @test l(domain) == [b*a,b,c,d] @test inv(l)(domain) == [b^-1*a,b,c,d] i,j = 3,1 r = rmul_AutSymbol(i,j) l = lmul_AutSymbol(i,j) @test r(domain) == [a,b,c*a,d] @test inv(r)(domain) == [a,b,c*a^-1,d] @test l(domain) == [a,b,a*c,d] @test inv(l)(domain) == [a,b,a^-1*c,d] i,j = 4,3 r = rmul_AutSymbol(i,j) l = lmul_AutSymbol(i,j) @test r(domain) == [a,b,c,d*c] @test inv(r)(domain) == [a,b,c,d*c^-1] @test l(domain) == [a,b,c,c*d] @test inv(l)(domain) == [a,b,c,c^-1*d] i,j = 2,4 r = rmul_AutSymbol(i,j) l = lmul_AutSymbol(i,j) @test r(domain) == [a,b*d,c,d] @test inv(r)(domain) == [a,b*d^-1,c,d] @test l(domain) == [a,d*b,c,d] @test inv(l)(domain) == [a,d^-1*b,c,d] end @testset "AutWords" begin f = AutSymbol("a", 1, :(a()), v -> v) @test isa(GWord(f), GWord) @test isa(GWord(f), AutWord) @test isa(AutWord(f), AutWord) @test isa(f*f, AutWord) @test isa(f^2, AutWord) @test isa(f^-1, AutWord) end @testset "eltary functions" begin f = symmetric_AutSymbol([2,1,4,3]) @test isa(inv(f), AutSymbol) @test isa(f^-1, AutWord) @test f^-1 == GWord(inv(f)) @test inv(f) == f end @testset "reductions/arithmetic" begin f = symmetric_AutSymbol([2,1,4,3]) f² = Groups.r_multiply(AutWord(f), [f], reduced=false) @test Groups.simplify_perms!(f²) == false @test f² == one(typeof(f*f)) a = rmul_AutSymbol(1,2)*flip_AutSymbol(2) b = flip_AutSymbol(2)*inv(rmul_AutSymbol(1,2)) @test a*b == b*a @test a^3 * b^3 == one(a) end @testset "specific Aut(𝔽₄) tests" begin N = 4 import Combinatorics.nthperm SymmetricGroup(n) = [nthperm(collect(1:n), k) for k in 1:factorial(n)] indexing = [[i,j] for i in 1:N for j in 1:N if i≠j] σs = [symmetric_AutSymbol(perm) for perm in SymmetricGroup(N)[2:end]]; ϱs = [rmul_AutSymbol(i,j) for (i,j) in indexing] λs = [lmul_AutSymbol(i,j) for (i,j) in indexing] ɛs = [flip_AutSymbol(i) for i in 1:N]; S = vcat(ϱs, λs, σs, ɛs) S = vcat(S, [inv(s) for s in S]) @test isa(S, Vector{AutSymbol}) @test length(S) == 102 @test length(unique(S)) == 75 S₁ = [GWord(s) for s in unique(S)] @test isa(S₁, Vector{AutWord}) p = prod(S₁) @test length(p) == 53 end end end