export WreathProduct, WreathProductElem ############################################################################### # # WreathProduct / WreathProductElem # ############################################################################### doc""" WreathProduct{T<:Group} <: Group > Implements Wreath product of a group $N$ by permutation (sub)group $P < S_k$, > usually written as $N \wr P$. > The multiplication inside wreath product is defined as > $$(n, \sigma) * (m, \tau) = (n\psi(\sigma)(m), \sigma\tau),$$ > where $\psi:P → Aut(N^k)$ is the permutation representation of $S_k$ > restricted to $P$. # Arguments: * `::Group` : the single factor of group $N$ * `::Generic.PermGroup` : full `PermutationGroup` """ struct WreathProduct{T<:Group} <: Group N::DirectProductGroup{T} P::Generic.PermGroup function WreathProduct{T}(G::T, P::Generic.PermGroup) where {T} N = DirectProductGroup(G, P.n) return new(N, P) end end struct WreathProductElem{T<:GroupElem} <: GroupElem n::DirectProductGroupElem{T} p::Generic.perm # parent::WreathProduct function WreathProductElem{T}(n::DirectProductGroupElem{T}, p::Generic.perm, check::Bool=true) where {T} if check length(n.elts) == parent(p).n || throw("Can't form WreathProductElem: lengths differ") end return new{T}(n, p) end end ############################################################################### # # Type and parent object methods # ############################################################################### elem_type(::WreathProduct{T}) where {T} = WreathProductElem{elem_type(T)} parent_type(::Type{WreathProductElem{T}}) where {T} = WreathProduct{parent_type(T)} parent(g::WreathProductElem) = WreathProduct(parent(g.n[1]), parent(g.p)) ############################################################################### # # WreathProduct / WreathProductElem constructors # ############################################################################### WreathProduct(G::Gr, P::Generic.PermGroup) where {Gr} = WreathProduct{Gr}(G, P) WreathProductElem(n::DirectProductGroupElem{T}, p, check=true) where {T} = WreathProductElem{T}(n, p, check) ############################################################################### # # Parent object call overloads # ############################################################################### function (G::WreathProduct)(g::WreathProductElem) n = try G.N(g.n) catch throw("Can't coerce $(g.n) to $(G.N) factor of $G") end p = try G.P(g.p) catch throw("Can't coerce $(g.p) to $(G.P) factor of $G") end return WreathProductElem(n, p) end doc""" (G::WreathProduct)(n::DirectProductGroupElem, p::Generic.perm) > Creates an element of wreath product `G` by coercing `n` and `p` to `G.N` and > `G.P`, respectively. """ (G::WreathProduct)(n::DirectProductGroupElem, p::Generic.perm) = WreathProductElem(n,p) (G::WreathProduct)() = WreathProductElem(G.N(), G.P(), false) doc""" (G::WreathProduct)(p::Generic.perm) > Returns the image of permutation `p` in `G` via embedding `p -> (id,p)`. """ (G::WreathProduct)(p::Generic.perm) = G(G.N(), p) doc""" (G::WreathProduct)(n::DirectProductGroupElem) > Returns the image of `n` in `G` via embedding `n -> (n,())`. This is the > embedding that makes sequence `1 -> N -> G -> P -> 1` exact. """ (G::WreathProduct)(n::DirectProductGroupElem) = G(n, G.P()) ############################################################################### # # Basic manipulation # ############################################################################### function deepcopy_internal(g::WreathProductElem, dict::ObjectIdDict) return WreathProductElem(deepcopy(g.n), deepcopy(g.p), false) end function hash(G::WreathProduct, h::UInt) return hash(G.N, hash(G.P, hash(WreathProduct, h))) end function hash(g::WreathProductElem, h::UInt) return hash(g.n, hash(g.p, hash(WreathProductElem, h))) end ############################################################################### # # String I/O # ############################################################################### function show(io::IO, G::WreathProduct) print(io, "Wreath Product of $(G.N.group) by $(G.P)") end function show(io::IO, g::WreathProductElem) print(io, "($(g.n)≀$(g.p))") end ############################################################################### # # Comparison # ############################################################################### function (==)(G::WreathProduct, H::WreathProduct) G.N == H.N || return false G.P == H.P || return false return true end function (==)(g::WreathProductElem, h::WreathProductElem) g.n == h.n || return false g.p == h.p || return false return true end ############################################################################### # # Group operations # ############################################################################### doc""" *(g::WreathProductElem, h::WreathProductElem) > Return the wreath product group operation of elements, i.e. > > `g*h = (g.n*g.p(h.n), g.p*h.p)`, > > where `g.p(h.n)` denotes the action of `g.p::Generic.perm` on > `h.n::DirectProductGroupElem` via standard permutation of coordinates. """ function *(g::WreathProductElem, h::WreathProductElem) w = DirectProductGroupElem((h.n).elts[inv(g.p).d]) return WreathProductElem(g.n*w, g.p*h.p, false) end doc""" inv(g::WreathProductElem) > Returns the inverse of element of a wreath product, according to the formula > `g^-1 = (g.n, g.p)^-1 = (g.p^-1(g.n^-1), g.p^-1)`. """ function inv(g::WreathProductElem) w = DirectProductGroupElem(inv(g.n).elts[g.p.d]) return WreathProductElem(w, inv(g.p), false) end ############################################################################### # # Misc # ############################################################################### matrix_repr(g::WreathProductElem) = Any[matrix_repr(g.p) g.n] function elements(G::WreathProduct) iter = Base.product(collect(elements(G.N)), collect(elements(G.P))) return (WreathProductElem(n, p, false) for (n,p) in iter) end order(G::WreathProduct) = order(G.P)*order(G.N)