""" Homomorphism(f, G::AbstractFPGroup, H::AbstractFPGroup[, check=true]) Struct representing homomorphism map from `G` to `H` given by map `f`. To define `h = Homomorphism(f, G, H)` function (or just callable) `f` must implement method `f(i::Integer, source, target)::AbstractWord` with the following meaning. Suppose that word `w = Word([i])` consists of a single letter in the `alphabet` of `source` (usually it means that in `G` it represents a generator or its inverse). Then `f(i, G, H)` must return the **word** representing the image in `H` of `G(w)` under the homomorphism. In more mathematical terms it means that if `h(G(w)) == h`, then `f(i, G, H) == word(h)`. Images of both `AbstractWord`s and elements of `G` can be obtained by simply calling `h(w)`, or `h(g)`. If `check=true` then the correctness of the definition of `h` will be performed when creating the homomorphism. !!! note `f(i, G, H)` must be implemented for all letters in the alphabet of `G`, not only for those `i` which represent `gens(G)`. Function `f` will be evaluated exactly once per letter of `alphabet(G)` and the results will be cached. # Examples ```julia julia> F₂ = FreeGroup(2) free group on 2 generators julia> g,h = gens(F₂) 2-element Vector{FPGroupElement{FreeGroup{Symbol, KnuthBendix.LenLex{Symbol}}, …}}: f1 f2 julia> ℤ² = FPGroup(F₂, [g*h => h*g]) Finitely presented group generated by: { f1 f2 }, subject to relations: f1*f2 => f2*f1 julia> hom = Groups.Homomorphism( (i, G, H) -> Groups.word_type(H)([i]), F₂, ℤ² ) Homomorphism from : free group on 2 generators to : ⟨ f1 f2 | f1*f2 => f2*f1 ⟩ julia> hom(g*h*inv(g)) f2 julia> hom(g*h*inv(g)) == hom(h) true ``` """ struct Homomorphism{Gr1, Gr2, I, W} gens_images::Dict{I, W} source::Gr1 target::Gr2 function Homomorphism( f, source::AbstractFPGroup, target::AbstractFPGroup; check=true ) A = alphabet(source) dct = Dict(i=>convert(word_type(target), f(i, source, target)) for i in 1:length(A)) I = eltype(word_type(source)) W = word_type(target) hom = new{typeof(source), typeof(target), I, W}(dct, source, target) if check @assert hom(one(source)) == one(target) for x in gens(source) @assert hom(x^-1) == hom(x)^-1 for y in gens(source) @assert hom(x*y) == hom(x)*hom(y) @assert hom(x*y)^-1 == hom(y^-1)*hom(x^-1) end end for (lhs, rhs) in relations(source) relator = lhs * inv(rhs, alphabet(source)) im_r = hom.target(hom(relator)) @assert isone(im_r) "Map does not define a homomorphism: h($relator) = $(im_r) ≠ $(one(target))." end end return hom end end function (h::Homomorphism)(w::AbstractWord) result = one(word_type(h.target)) # Word for l in w append!(result, h.gens_images[l]) end return result end function (h::Homomorphism)(g::AbstractFPGroupElement) @assert parent(g) === h.source w = h(word(g)) return h.target(w) end Base.show(io::IO, h::Homomorphism) = print(io, "Homomorphism\n from : $(h.source)\n to : $(h.target)")