function _abelianize( i::Integer, source::AutomorphismGroup{<:FreeGroup}, target::MatrixGroups.SpecialLinearGroup{N,T}) where {N,T} n = ngens(object(source)) @assert n == N aut = alphabet(source)[i] if aut isa Transvection # we change (i,j) to (j, i) to be consistent with the action: # Automorphisms act on the right which corresponds to action on # the columns in the matrix case eij = MatrixGroups.ElementaryMatrix{N}( aut.j, aut.i, ifelse(aut.inv, -one(T), one(T)) ) k = alphabet(target)[eij] return word_type(target)([k]) else throw("unexpected automorphism symbol: $(typeof(aut))") end end function _abelianize( i::Integer, source::AutomorphismGroup{<:Groups.SurfaceGroup}, target::MatrixGroups.SpecialLinearGroup{N,T}) where {N,T} n = ngens(Groups.object(source)) @assert n == N g = alphabet(source)[i].autFn_word result = one(target) for l in word(g) append!(word(result), _abelianize(l, parent(g), target)) end return word(result) end function Groups._abelianize( i::Integer, source::AutomorphismGroup{<:Groups.SurfaceGroup}, target::MatrixGroups.SymplecticGroup{N,T} ) where {N,T} @assert iseven(N) As = alphabet(source) At = alphabet(target) SlN = let genus = Groups.genus(Groups.object(source)) @assert 2genus == N MatrixGroups.SpecialLinearGroup{2genus}(T) end ab = Groups.Homomorphism(Groups._abelianize, source, SlN, check=false) matrix_spn_map = let S = gens(target) Dict(MatrixGroups.matrix(g) => word(g) for g in union(S, inv.(S))) end # renumeration: # (f1, f2, f3, f4, f5, f6) = (a₁, a₂, a₃, b₁, b₂, b₃) → # → (b₃, a₃, b₂, a₂, b₁, a₁) # hence p = [6, 4, 2, 5, 3, 1] p = [reverse(2:2:N); reverse(1:2:N)] g = source([i]) Mg = MatrixGroups.matrix(ab(g))[p, p] return matrix_spn_map[Mg] end